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We present canonical linearized equations of motion for the Whipple bicycle model
consisting of four rigid laterally-symmetric ideally-hinged parts: two wheels, a frame
and a front assembly. The wheels are also axisymmetric and make ideal knife-edge
rolling point-contact with the level ground. The mass distribution and geometry are
otherwise arbitrary. This conservative non-holonomic system has a 7-dimensional
accessible configuration space and three velocity degrees of freedom parameterized
by rates of frame lean, steer angle and rear-wheel rotation. We construct the terms
in the governing equations methodically for easy implementation. The equations
are suitable for e.g. the study of bicycle self-stability. We derived these equations
by hand in two ways and also checked them against two non-linear dynamics simu-
lations. In the century-old literature several sets of equations fully agree with those
here and several do not. Two benchmarks provide test cases for checking alter-
native formulations of the equations of motion or alternative numerical solutions.
Further, the results here can also serve as a check for general-purpose dynamics
programs. For the benchmark bicycles we accurately calculate the eigenvalues (the
roots of the characteristic equation) and the speeds at which bicycle lean and steer
are self-stable, confirming the century-old result that this conservative system can
have asymptotic stability.
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Figure 1. Bicycle model parameters. For all four parts (R, B, F and H), centre of mass
locations are expressed relative to the x and z coordinates shown (with origin at P and y
pointing towards the reader) and in the reference configuration shown. Other parameters
are the body masses and inertias, the wheel radii, the tilt λ of the steer axis, the wheel
base w and the trail c as listed in table 1. The figure is drawn to scale using the distances
in table 1. Configuration variables (lean, steer, etc.) are defined in figure 2.

1. Introduction

In 1818 Karl von Drais showed that a person riding forward on a contraption with
two in-line wheels, a sitting scooter of sorts, could balance by steering the front
wheel (Herlihy 2004). Later, the velocipede of the 1860s which had pedals directly
driving the front wheel like on a child’s tricycle, could also be balanced by rider-
applied steering control. This “boneshaker” had equal-size wooden wheels and a
vertical (untilted) steering axis passing through the front wheel axle. By the 1890s
it was well known that essentially anyone could learn to balance a “safety bicycle”,
which had pneumatic tires and a chain drive. More subtly, but more importantly
for balance and control, the safety bicycle also had a tilted steer axis and fork offset
(bent front fork) like a modern bicycle. In 1897 French mathematician Emmanuel
Carvallo (1899) and then, more generally, Cambridge undergraduate Francis Whip-
ple (1899) used rigid-body dynamics equations to show in theory what was surely
known in practice, that some safety bicycles could, if moving in the right speed
range, balance themselves. Today these same two basic features of bicycle balance
are clear:

i. A controlling rider can balance a forward-moving bicycle by turning the front
wheel in the direction of an undesired lean. This moves the ground-contact
points under the rider, just like an inverted broom or stick can be balanced
on an open hand by accelerating the support point in the direction of lean.

ii. Some uncontrolled bicycles can balance themselves. If an appropriate typical
bicycle is given a push to about 6 m/s, it steadies itself and then progresses
stably until its speed gets too low. The torques for the self-correcting steer
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Figure 2. Configuration and dynamic variables. The 7-dimensional accessible con-
figuration space is parameterized here by the x and y coordinates of the rear contact
P, measured relative to a global fixed coordinate system, and 5 angles represented by a
sequence of hinges (gimbals). The hinges are drawn as a pair of cans which rotate with
respect to each other. For a positive rotation, the can with the arrow rotates in the di-
rection of the arrow relative to its mate as shown on the enlarged isolated can at the top
right. The ψ can is grounded in orientation but not in location. For example, a clockwise
(looking down) change of heading (yaw) ψ of the rear frame B, is positive. The lean (‘roll’
in aircraft terminology) to the right is φ. The rear wheel rotates with θR relative to the
rear frame, with forward motion being negative. The steer angle is δ with right steer pos-
itive. The front wheel rotates with θF relative to the front frame. As pictured, ψ, φ and δ
are all positive. The velocity degrees of freedom are parameterized by φ̇, δ̇ and θ̇R. The
sign convention used is the engineering vehicle dynamics standard J670e (SAE 2001).

motions can come from various geometric, inertial and gyroscopic features of
the bicycle.

Beyond these two generalities, there is little that has been solidly accepted in the
literature, perhaps because of the lack of need. Through trial and error bicycles had
evolved by 1890 to be stable enough to survive to the present day with essentially
no modification. Because bicycle design has been based on tinkering rather than
equations, there has been little scrutiny of bicycle analyses.

To better satisfy general curiosity about bicycle balance and perhaps contribute
to the further evolution of bicycle design, we aim here to firmly settle some basic,
and largely previously presented, bicycle stability science. The core of the paper
is a set of easy-to-use and thoroughly checked linearized dynamics equations for
the motion of a somewhat elaborate, yet well-defined, bicycle model. These are
in equation (5.3) and Appendix A. Future studies of bicycle stability aimed, for
example, at clarifying especially point (ii) above, can be based on these equations.
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Many methods can be used to derive the equations using various choices of coor-
dinates, each leading to vastly different-looking governing equations. Even matching
initial conditions between solution methods can be a challenge. However, the roots
of the characteristic equation (eigenvalues) and the speed-range of stability are in-
dependent of all of these differences. So, for example, a computer-based study of a
bicycle based on any formulation can be checked for correctness and accuracy by
comparing with the benchmark eigenvalues here.

The work here may also have more general use in that the bicycle balance
problem is close to that for skating, walking and running in their coupling of lean,
steer and balance. Also, there is a dearth of non-trivial examples with precisely
known solutions that can be used to check general purpose multi-body dynamics
simulators (such as are used for machine, vehicle and robot design). This paper
provides such a non-trivial benchmark system.

2. Brief literature review

Since their inception bicycles have attracted attention from more-or-less well known
scientists of the day including thermodynamicist William Rankine, the mathemati-
cians Carlo Bourlet, Paul Appell and Emmanuel Carvallo, the meteorologist Francis
Whipple, the mathematical physicist Joseph Boussinesq, and the physicist Arnold
Sommerfeld working with mathematician Felix Klein and engineer Fritz Noether
(brother of Emmy). A later peak in the “single-track vehicle” dynamics literature
began in about 1970, perhaps because digital computers eased integration of the
governing equations, because of the increased popularity of large motorcycles (and
attendant accidents), and because of an ecology-related bicycle boom. This latter
literature includes work by dynamicists such as Nĕımark, Fufaev, Breakwell and
Kane. Starting in the mid-1970s the literature increasingly deviates from the rigid-
body treatment that is our present focus.

Over the past 140 years scores of other people have studied bicycle dynamics,
either for a dissertation, a hobby, or sometimes as part of a life’s work on vehicles.
This sparse and varied research on the dynamics of bicycles modelled as linked
rigid bodies was reviewed in Hand (1988). A more general but less critical historical
review, which also includes treatments with structural compliance and tire models,
is in Sharp (1985).

Many bicycle analyses aimed at understanding rider control are based on qual-
itative dynamics discussions that are too reduced to capture the ability of an un-
controlled moving bicycle to balance itself. The Physics Today paper by David
E. H. Jones (1970) is the best-known of these. The paper by Maunsell (1946) care-
fully considers several effects. Qualitative dynamics discussions can also be found
in Lallement (1866), Rankine (1869), Sharp (1896), Appell (1896), Wallace (1929),
A. T. Jones (1942), Den Hartog (1948), Higbie (1974), Kirshner (1980), Le Hénaff
(1987), Olsen & Papadopoulos (1988), Patterson (1993), Cox (1998), and Wilson
(2004).

A second class of papers does use analysis to study the dynamics. Some, appro-
priately for basic studies of rider control, use models with geometry and/or mass dis-
tribution that are too reduced to allow self-stability. Others, even if using a bicycle
model that is sufficiently general, use rules for the control of the steer and thus skip
the additional equation for uncontrolled steer dynamics. Such simple and/or steer-
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controlled approaches are found in Bourlet (1899), Boussinesq (1899a,b), Routh
(1899), Bouasse (1910), Bower (1915), Pearsall (1922), Lŏıcjanskĭı & Lur’e (1934),
Timoshenko & Young (1948), Haag (1955), Nĕımark & Fufaev (1972), Lowell &
McKell (1982), Getz & Marsden (1995), Fajans (2000), Åström et al. (2005) and
Limebeer & Sharp (2006).

Finally, we have found about 30 rigid-body dynamics models that have general-
enough geometry and mass distribution for self-stability to be possible, and which
also allow uncontrolled steer dynamics. These governing equations are complex and
different authors use slightly different modelling assumptions, different parameteri-
zations and different choices of dynamic variables. And most authors did not know
of most of their predecessors. So only a small fraction of the 200 or more chronolog-
ically possible cross checks have been performed in detail. Of these a large fraction
are by Hand and ourselves. The evaluations below are based on comparison with
our own derivations (Papadopoulos 1987, Meijaard 2004 and Schwab et al. 2005),
and on comparisons made by the first 6 authors below, especially Hand.

Correct equations for the Whipple model are in Döhring (1955) who built on
the less-general Carvallo model presented in Klein & Sommerfeld (1910), in Weir
(1972), who checked Sharp (1971), in Eaton (1973), who checked Weir (1972) and
Sharp (1971), in Hand (1988), who checked these papers and others, and in Mears
(1988) who checked Weir and Hand. Singh & Goel (1971) use Döhring’s correct
equations, but we were unable to reproduce their eigenvalues. The paper by Dikarev
et al. (1981) corrects an error in Nĕımark & Fufaev (1972), independently also
corrected later by Hand, and we have found no fault with it, but we have not
confirmed the final equations. Based on graphical agreement of Psiaki’s (1979) plots
against solutions of the equations here, we expect that Psiaki’s complex equations
are correct, but we have not confirmed their formal equivalence to ours.

Equations of similar models are in Carvallo (1899) which is slightly simplified,
Whipple (1899) which has some typographical errors, Klein & Sommerfeld (1910)
which follows Carvallo and is slightly simplified and Herfkens (1949) which has some
typographical errors. We recently discovered a report by Manning (1951) that has
no evident flaws, but we have not checked it in detail. Sharp (1971) is correct before
he eliminates tire compliance and is the foundation for much subsequent tire-based
vehicle modelling. Van Zytveld (1975) is correct when his slightly incorrect and
more general model is simplified to the Whipple model. And Weir & Zellner (1978)
has a sign error. Nĕımark & Fufaev (1967) has more substantial but still correctable
errors (see Dikarev et al. (1981) and Hand (1988)).

Others who studied complex rigid-body bicycle models include Collins (1963),
Singh (1964), Rice & Roland (1970), Roland & Massing (1971), Roland & Lynch
(1972), Roland (1973), Rice (1974), Singh & Goel (1976), Rice (1976), Lobas (1978),
Koenen (1983), Franke et al. (1990), Lennartsson (1999), Åström et al. (2005) and
Limebeer & Sharp (2006). We continue to discover more promising papers (e.g.,
Kondo et al. (1963) and Ge (1966)). Despite all these decades of careful good work,
as of this writing there is no standard journal publication in English that we are
confident presents complete and correct equations for the canonical Whipple model.

Supplementary Appendix 1 expands on the historical review above.
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3. The Bicycle Model

We use the Whipple bicycle consisting of four rigid bodies: a Rear wheel R, a rear
frame B with the rider Body rigidly attached to it, a front frame H consisting
of the Handlebar and fork assembly, and a Front wheel F (figure 1). Within the
constraint of overall lateral (left-right) symmetry and circular symmetry of the
wheels, the shape and mass distributions are general with one caveat. A model
that respects these symmetries allows non-planar (thick) wheels. We allow for such
thickness in our inertial properties but, like Whipple, restrict attention to knife-
edge rolling point-contact, thus excluding, e.g., contact with toroidal wheels. We
neglect the motion of the rider relative to the frame, structural compliances and
dampers, joint friction, and tire models with compliance and slip.

The model delineation is not by selecting the most important aspects for describ-
ing real bicycle behaviour. For understanding basic features of active rider control
the model here is undoubtedly unnecessarily and inappropriately complex. For ex-
ample, some aspects included here have very small effects, like the non-planarity
of the inertia of the real wheel. And other neglected aspects may be paramount,
e.g. the rider’s flexibility and control reflexes. Even for the study of uncontrolled
stability, tire deformation and frame compliance seem necessary for understanding
wobble (a rapid steering oscillation). In summary, the model here includes all the
sharply-defined rigid-body effects, while leaving out a plethora of terms that would
require more subtle and less well-defined modelling.

Our bicycle design is fully characterized by 25 parameters described below. Ta-
ble 1 lists the numerical values used for the numerical benchmark. Most numerical
values are representative of real bicycles, but some values (e.g., wheel inertial thick-
ness as represented by IRxx > IRyy/2) are exaggerated to guarantee a detectable
role in the benchmark numerical studies. The bicycle design parameters are defined
in an upright reference configuration with both wheels on the level flat ground and
with zero steer angle. The reference coordinate origin is at the rear wheel contact
point P. We use the conventions of vehicle dynamics (J670e, SAE 2001) with posi-
tive x pointing generally towards the front contact point, positive z pointing down
and the y axis pointing to the rider’s right.

The radii of the circular wheels are rR and rF. The wheel masses aremR and mF

with their centres of mass at the wheel centres. The moments of inertia of the rear
and front wheels about their axles are IRyy and IFyy, respectively. The moments of
inertia of the wheels about any diameter in the xz plane are IRxx and IFxx. The
wheel mass distribution need not be planar, so any positive inertias are allowed
with IRyy ≤ 2IRxx and IFyy ≤ 2IFxx. All front wheel parameters can be different
from those of the rear so, for example, it is possible to investigate separately the
importance of angular momentum of the front and rear wheels.

Narrow high-pressure high-friction tire contact is modelled as non-slipping
rolling point-contact between the ground and the knife-edge wheel perimeters. The
frictionless wheel axles are orthogonal to the wheel symmetry planes and are located
at the wheel centres. In the reference configuration the front wheel ground contact
Q is located at a distance w (the wheel base) in front of the rear wheel contact P.
The front wheel ground contact point trails a distance c behind the point where the
steer axis intersects the ground. Although c > 0 for most bicycles, the equations
allow a negative trail (c < 0) with the wheel contact point in front of the steer axis.
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The rear wheel R is connected to the rear frame assembly B (which includes
the rider body) at the rear axle. The centre of mass of B, with mass mB, is lo-
cated at (xB, yB = 0, zB < 0). The moment of inertia of the rear frame about its
centre of mass is represented by a 3 × 3 moment of inertia matrix where all mass
is symmetrically distributed relative to the xz plane, but not necessarily on the
plane. The centre of mass of the front frame assembly (fork and handlebar) H is at
(xH, yH = 0, zH < 0) relative to the rear contact P. H has mass mH. As for the B
frame, IHyy can be less than IHxx + IHzz. The moment of inertia matrices of the
rear and front assemblies are:

IB =





IBxx 0 IBxz

0 IByy 0

IBxz 0 IBzz



 , and IH =





IHxx 0 IHxz

0 IHyy 0

IHxz 0 IHzz



 . (3.1)

To be physical (i.e., no negative mass) the moment-of-inertia matrix must have
all principal values positive and also satisfy the triangle inequalities that no one
principal value is bigger than the sum of the other two. The steer axis tilt angle λ is
measured from the upwards vertical, positive when tipped back as on a conventional
bicycle with −π/2 < λ < π/2 (all angles in radians). The steer tilt is π/2 minus the
conventional “head angle”; a bicycle with head angle of 72◦ has λ = 18◦ = π/10.
The steer axis location is implicitly defined by the wheel base w, trail c and steer
axis tilt angle λ.

Two non-design parameters are the downwards gravitational acceleration g and
the nominal forward speed v. This model, or slight simplifications of it, is a common
idealization of a bicycle (see Supplementary Appendix 1). Motorcycle modelling is
often based on an extension of this model using toroidal wheels, tire compliance,
tire slip and frame compliance. Theories of bicycle and motorcycle control are often
based on simplifications of this model or, alternatively, on simple analogous systems
that do not come from reductions of this model.

(a) How many parameters describe the bicycle model?

The bicycle model here is defined completely by the 25 design parameters above
(see table 1). This is not a minimal description for dynamic analysis, however. For
example, the inertial properties of the rear wheel R, except for the polar moment
of inertia (i.e., mR and IRxx but not IRyy), can be combined with the inertial
properties of the rear frame B, reducing the number of parameters by 2. The same
combination can be used for the front frame, reducing the number of parameters
to 25− 2− 2 = 21. The polar inertia of each wheel can be replaced with a gyrostat
constant which gives its spin angular momentum in terms of forward velocity. This
does not reduce the number of parameters in non-linear modelling. But in linear
modelling the radius of the wheels is irrelevant for lean and steer geometry and their
effect on angular momentum is embodied in the gyrostat constants. Eliminating
wheel radii reduces the number of parameters by 2 to 21 − 2 = 19. Finally, in
the linearized equations of motion the polar (yy components) of the moments of
inertia of the two frames are irrelevant, reducing the necessary number of design
parameters to 19 − 2 = 17.

In their most reduced form the linearized equations of motion (5.3) have 11
arbitrary independent matrix entries. Each entry is a complex combination of the 17
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parameters just described. Still further reduction can be obtained by inspection of
the fourth order characteristic equation (6.5). After scaling by the leading coefficient
det(M), there remain four coefficients, each a polynomial in the forward speed.
There are seven independent coefficients of these velocity polynomials. By reduction
using suitable length and time scales, two of these coefficients can be eliminated. So
the space of scaled root loci plots is only five-dimensional. For simpler comparisons,
we use all 25 design parameters.

(b) How many degrees of freedom does the bicycle model have?

Because this system has non-holonomic kinematic constraints, the concept of
“degree of freedom” needs clarification. The holonomic (hinges and ground con-
tacts) and non-holonomic (non-slip rolling) constraints restrict these four linked
3-dimensional objects in space as follows. Start with the 24 degrees of freedom
of the 4 rigid bodies, each with 3 translational and 3 rotational degrees of free-
dom in physical space (4 × (3 + 3) = 24). Then subtract 5 degrees of freedom for
each of the three hinges and one more for each wheel touching the ground plane:
24 − 3 × 5 − 2 = 7. Thus, before we consider the non-slipping wheel-contact con-
straints, the accessible configuration space is 7-dimensional. The 4 non-holonomic
rolling constraints (two for each wheel-to-ground contact) do not further restrict this
accessible configuration space: kinematically allowable rolling motions can translate
and steer the bicycle on the plane in arbitrary ways and also can rotate the wheels
relative to the frame with no net change of overall bicycle position or orientation.
For example, even though side-slip is not allowed, a bicycle can move sideways by
the same motions used to parallel-park a car. Thus the accessible configuration
space for this model is 7-dimensional.

(i) Description of the 7-dimensional configuration space

This 7-dimensional configuration space can be parameterized as follows (see
figure 2). The location of the rear-wheel contact with the ground is (xP, yP) relative
to a global fixed coordinate system with origin O. The orientation of the rear frame
with respect to the global reference frame O-xyz is given by a sequence of angular
rotations (312 Euler angles). These rotations are depicted in figure 2 with fictitious
hinges, each represented as a can in the drawing, in series, mounted at the rear hub:
a yaw rotation, ψ, about the z-axis, a lean rotation, φ, about the rotated x-axis, and
a pitch rotation, θB, about the rotated y-axis. Note that the pitch θB is not one of the
7 configuration variables because it is determined by a 3-dimensional trigonometric
relation that keeps the steered front wheel on the ground. The steering angle δ is
the rotation of the front handlebar frame with respect to the rear frame about the
steering axis. A right turn of a forwards-moving bicycle has δ > 0. Finally, the
rotation of the rear R and front F wheels with respect to their respective frames
B and H are θR and θF. In summary, the configuration space is parameterized
here with (xP, yP, ψ, φ, δ, θR, θF). Quantities such as wheel-centre coordinates and
rear-frame pitch are all determined by these.

For Proc. R. Soc. A. 463, 2007



Bicycle dynamics benchmark 9

Table 1. Parameters for the benchmark bicycle depicted in figure 1 and described in the
text. The values given are exact (no round-off). The inertia components and angles are
such that the principal inertias (eigenvalues of the inertia matrix) are also exactly described
with only a few digits. The tangents of the angles that the inertia eigenvectors make with
the global reference axes are rational fractions.

Parameter Symbol Value for benchmark

Wheel base w 1.02 m
Trail c 0.08 m
Steer axis tilt λ π/10 rad

(π/2 − head angle) (90◦ − 72◦)
Gravity g 9.81 N/kg
Forward speed v various m/s, see tables 2

Rear wheel R

Radius rR 0.3 m
Mass mR 2 kg
Mass moments of inertia (IRxx, IRyy) (0.0603, 0.12) kgm2

Rear Body and frame assembly B

Position centre of mass (xB, zB) (0.3,−0.9) m
Mass mB 85 kg

Mass moments of inertia

2

4

IBxx 0 IBxz

0 IByy 0
IBxz 0 IBzz

3

5

2

4

9.2 0 2.4
0 11 0

2.4 0 2.8

3

5 kgm2

Front Handlebar and fork assembly H

Position centre of mass (xH, zH) (0.9,−0.7) m
Mass mH 4 kg

Mass moments of inertia

2

4

IHxx 0 IHxz

0 IHyy 0
IHxz 0 IHzz

3

5

2

4

0.05892 0 −0.00756
0 0.06 0

−0.00756 0 0.00708

3

5kgm2

Front wheel F

Radius rF 0.35 m
Mass mF 3 kg
Mass moments of inertia (IFxx, IFyy) (0.1405, 0.28) kgm2

(ii) Velocity degrees of freedom

As explained above, the accessible configuration space is 7-dimensional. How-
ever, the 4 non-holonomic rolling constraints (one longitudinal and one lateral for
each wheel-to-ground contact) reduce the 7-dimensional accessible configuration
space to 7 − 4 = 3 velocity degrees of freedom. This 3-dimensional kinematically
accessible velocity space can conveniently be parameterized by the lean rate φ̇ of
the rear frame, the steering rate δ̇, and the rotation rate θ̇R of the rear wheel R
relative to the rear frame B.

4. Basic features of the model, equations and solutions

(a) The system behaviour is unambiguous

The dynamics equations for this model follow from linear and angular mo-
mentum balance applied to each part, along with the assumption that the kine-
matic constraint forces follow the rules of action and reaction and do no net work.
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These equations may be assembled into a set of ordinary differential equations,
or differential-algebraic equations by various methods. One can assemble govern-
ing differential equations using the Newton-Euler rigid-body equations, Lagrange
equations with Lagrange multipliers for the in-ground-plane rolling-contact forces or
methods based on the principle of virtual velocities (e.g., Kane’s method), etc. But
the subject of mechanics is sufficiently well defined that we know that all standard
methods will yield equivalent sets of governing differential equations. Therefore,
a given consistent-with-the-constraints initial state (positions and velocities of all
points on the frames and wheels) will always yield the same subsequent motions
of the bicycle parts. So, while the choice of variables and the recombination of
equations may lead to quite different looking governing equations, any difference
between dynamics predictions can only be due to errors.

(b) The system is conservative but not Hamiltonian

The only friction forces in this model are the lateral and longitudinal forces
at the ground-contact points. But, because of the no-slip conditions (constraints)
these friction forces are modelled by non-dissipative constraint forces. The hinges
and ground contacts are all workless kinematic constraints. In uncontrolled bicycle
motion the only external applied forces are the conservative gravity forces on each
part. That is, there are no dissipative forces and the system is energetically conser-
vative; the sum of the gravitational and kinetic energies is a constant for any free
motion. But the non-holonomic kinematic constraints preclude writing the govern-
ing equations in standard Hamiltonian form, so theorems of Hamiltonian mechan-
ics do not apply. One result, surprising to some cultured in Hamiltonian systems,
is that the non-dissipative bicycle equations can have asymptotic (exponential)
stability (see figure 4). This apparent contradiction of the stability theorems for
Hamiltonian systems is because the bicycle, while conservative, is, by virtue of the
non-holonomic wheel contacts, not Hamiltonian. A similar system that is conser-
vative but has asymptotic stability is the uncontrolled skateboard (Hubbard 1979)
and simpler still is the classical Chaplygin sleigh described in, e.g., Ruina (1998).

(c) Symmetries in the solutions

Without explicit use of the governing equations some features of their solutions
may be inferred by symmetry.

Ignorable coordinates. Some of the configuration variables do not appear in any
expression for the forces, moments, potential energies or kinetic energies of any
of the parts. These so-called cyclic or ignorable coordinates are: the location of
the bicycle on the plane (xP, yP), the heading of the bicycle ψ, and the rotations
(θR, θF) of the two wheels relative to their respective frames. So one can write a
reduced set of dynamics equations that do not include these ignorable coordinates.
The full configuration as a function of time can be found afterwards by integration
of the kinematic constraint equations, as discussed at the end of Appendix B. These
ignorable coordinates cannot have asymptotic stability; a small perturbation of, say,
the heading ψ will lead to a different ultimate heading.

Decoupling of lateral dynamics from speed dynamics. The lateral (left-right)
symmetry of the bicycle design along with the lateral symmetry of the equations
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implies that the straight-ahead unsteered and untipped (δ = 0, φ = 0) rolling
motions are necessarily solutions for any forward or backward speed v. Moreover,
relative to these symmetric solutions, the longitudinal and the lateral motion must
be decoupled from each other to first order (linearly decoupled) by the following
argument. Because of lateral symmetry a perturbation to the right must cause the
same change in speed as a perturbation to the left. But by linearity the effects must
be the negative of each other. Therefore there can be no first-order change in speed
due to lean. Similarly, speed change alone cannot cause lean. So the linearized fore-
aft equations of motion are entirely decoupled from the lateral equations of motion
and a constant speed bicycle has the same linearized equations of lateral motion as
a constant energy bicycle. This argument is given in more detail in Supplementary
Appendix 4.

A fore-aft symmetric bicycle cannot be asymptotically self stable. For any rigid
body system with workless kinematic constraints and state dependent forces any
solution q(t) implies a solution q(−t). Thus any bicycle motion is also a solution of
the equations when moving backwards, with all particle trajectories being traced
at identical speeds in the reverse direction. Thus a bicycle that is exponentially
stable in balance when moving forwards at speed v > 0 must be exponentially
unstable when moving at −v (backwards at the same speed). Consider a fore-aft
symmetric bicycle. Such a bicycle has a vertical central steering axis (or a horizontal
steering axis) and has a handlebar assembly, front mass distribution and front
wheel that mirrors that of the rear assembly. If such a bicycle has exponentially
decaying solutions in one direction it must have exponentially growing solutions in
the opposite direction because of time reversal. By symmetry it must therefore also
have exponentially growing solutions in the (supposedly stable) original direction.
Thus such a bicycle cannot have exponentially decaying solutions in one direction
without also having exponentially growing solutions in the same direction, and thus
cannot be asymptotically self-stable. Such a symmetric bicycle might, however, have
the oscillatory (neutral) stability of the type Hamiltonian systems can have.

(d) The non-linear equations have no simple expression

In contrast with the linear equations we present below, there seems to be no
reasonably compact expression of the full non-linear equations of motion for this
model. The kinematic loop, from rear-wheel contact to front-wheel contact, deter-
mines the rear frame pitch through a complicated equation (Psiaki 1979) which can
be expressed as a quartic polynomial equation. So there is no simple expression for
rear frame pitch for large lean and steer angles. Thus the writing of non-linear gov-
erning differential equations in a standard form that various researchers can check
against alternative derivations is a challenge that is not addressed here, and might
never be addressed. However, when viewed as a collection of equations, one for each
part, and a collection of constraint equations, a large set of separately comprehensi-
ble equations may be assembled. An algorithmic derivation of non-linear equations
using such an assembly, suitable for numerical calculation and benchmark compar-
ison, is presented in (Basu-Mandal et al. 2007) where a complete set of no-hands
circular motions are also presented.
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5. Linearized equations of motion

Here we present a set of linearized differential equations for the bicycle model,
slightly perturbed from upright straight-ahead motion, in a canonical form. To aid
in organizing the equations we include applied lean and steer torques which are
later set to zero for study of uncontrolled motion.

(a) Derivation of governing equations

Mostly-correct derivations and presentations of the equations of motion for a
relatively general bicycle model, although not necessarily expressed in the canonical
form of equation (5.3), are found in Carvallo (1899), Whipple (1899), Klein & Som-
merfeld (1910), Herfkens (1949), Döhring (1953, 1955), Sharp (1971), Weir (1972),
Eaton (1973) and Van Zytveld (1975). Dikarev et al. (1981) have a derivation of
equations equivalent to (5.3), based on correcting the errors in Nĕımark and Fufaev
(1972) as does Hand (1988) which just predates Mears (1988). Papadopoulos (1987)
and Meijaard (2004) also have derivations which were generated in preparation for
this paper.

The derivations above are generally long, leading to equations with layers of
nested definitions. This is at least part of the reason for the lack of cross checking
in the literature. A minimal derivation of the equations using angular momentum
balance about various axes, based on Papadopoulos (1987), is given in Appendix B.
Note that this derivation, as well as all of the linearized equations from the litera-
ture, is not based on a systematic linearization of full non-linear differential equa-
tions. Thus far, systematic linearizations have not achieved analytical expressions
for the linearized-equation coefficients in terms of the 25 bicycle parameters. How-
ever, part of the validation process described later includes numerical comparison
with full non-linear simulations, and also comparison with numerical values of the
linearized-equation coefficients as determined by these same non-linear programs.

(b) Forcing terms

For numerical benchmark purposes, where eigenvalues are paramount, we ne-
glect control forces or other forcing (except gravity which is always included). How-
ever, the forcing terms help to organize the equations. Moreover, forcing terms are
needed for study of disturbances and rider control.

In addition to the gravity forces, consider an arbitrary distribution of forces Fi

acting at various points on the bicycle. Their net effect is to contribute to the forces
of constraint (the ground reaction forces, and the action–reaction pairs between
the parts at the hinges) and to contribute to the accelerations (φ̈, δ̈, θ̈R). Three
generalized forces can be defined by writing the power of the applied forces, kept at
their current values, associated with arbitrary perturbations of the velocities that
are consistent with the hinge-assembly and ground-wheel contact constraints. This
“virtual” power necessarily factors into a sum of three terms

P =
∑

Fi · ∆vi = Tφ∆φ̇+ Tδ∆δ̇ + TθR
∆θ̇R, (5.1)

because the perturbations of the velocities ∆vi of all material points are necessarily
linear combinations of the perturbations of the generalized velocities (∆φ̇,∆δ̇,∆θ̇R).
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The generalized forces (Tφ, Tδ, TθR
) are thus each linear combinations of the com-

ponents of the various applied forces Fi.
The generalized forces (Tφ, Tδ, TθR

) are energetically conjugate to the gener-
alized velocities. The generalized forces can be visualized by considering special
loadings each of which contributes to only one generalized force when the bicycle
is in the reference configuration. In this way of thinking

1. TθR
is the propulsive “force”, expressed as an equivalent moment on the rear

wheel. In practice pedal torques or a forward push on the bicycle contribute
to TθR

and not to Tφ and Tδ.

2. Tφ is the right lean torque, summed over all the forces on the bicycle, about
the line between the wheel ground contacts. A force, perpendicular to the rear
frame located directly above the rear contact point contributes only to Tφ. A
sideways wind gust, or a parent holding a beginning rider upright, contributes
mainly to Tφ.

3. Tδ is an action-reaction steering torque. A torque causing a clockwise (looking
down) action to the handlebar assembly H along the steer axis and an equal
and opposite reaction torque on the rear frame contributes only to Tδ. In sim-
ple modelling, Tδ would be the torque that a rider applies to the handlebars.
Precise description of how general lateral forces contribute to Tδ depends on
the projection implicit in equation (5.1). Some lateral forces make no contri-
bution to Tδ, namely those acting at points on either frame which do not move
when an at-rest bicycle is steered but not leaned. Lateral forces applied to the
rear frame directly above the rear contact point make no contribution to Tδ.
Nor do forces applied to the front frame if applied on the line connecting the
front contact point with the point where the steer axis intersects the vertical
line through the rear contact point. Lateral forces at ground level, but off the
two lines just described, contribute only to Tδ. Lateral forces acting at the
wheel contact points make no contribution to any of the generalized forces.

Just as for a pendulum, finite vertical forces (additional to gravity) change the
coefficients in the linearized equations of motion but do not contribute to the forcing
terms (e.g., a magnet under a pendulum changes the effective g in θ̈ + (g/ℓ)θ = 0
but not the 0). Similarly, propulsive forces also change the coefficients but have
no first order effect on the lateral forcing. Thus the equations presented here only
apply for small (≪

∑

mig) propulsive and small additional vertical forces.

(c) The first linear equation: with no forcing, forward speed is constant

A solution of both the linearized and the full non-linear equations is straight-
ahead δ = 0 upright φ = 0 motion at any constant forward speed v = −θ̇RrR.
The governing equations here describe the evolution of small perturbations from
this reference solution. As explained above and in more detail in Supplementary
Appendix 4, lateral symmetry of the system, combined with the linearity in the
equations, precludes any first-order coupling between the forward motion and the
lean and steer. Therefore the first linearized equation of motion is simply obtained
from two-dimensional (xz-plane) mechanics as:

[

r2RmT + IRyy + (rR/rF)
2
IFyy

]

θ̈R = TθR
, (5.2)
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where mT is total bicycle mass (see Appendix A). In cases with no propulsive force
the nominal forward speed v = −θ̇RrR is therefor constant (to first order).

(d) Lean and steer equations

The linearized equations of motion for the two remaining degrees of freedom, the
lean angle φ and the steer angle δ, are two coupled second-order constant-coefficient
ordinary differential equations. Any such set of equations can be linearly combined
to get an equivalent set. We define the canonical form below by insisting that the
right-hand sides of the two equations consist only of Tφ and Tδ, respectively. The
first of these two equations is the lean equation and the second is the steer equation.
Mechanical systems have linearized equations of the form Mq̈+Cq̇+Kq = f . For
the bicycle model these equations can be written, with velocity and gravity explicit,
as (Papadopoulos 1987)

Mq̈ + vC1q̇ + [gK0 + v 2K2]q = f , (5.3)

where the time-varying quantities are q = [φ, δ]T and f = [Tφ, Tδ]
T . The constant

entries in matrices M, C1, K0 and K2 are defined in terms of the 25 design param-
eters in Appendix A. Briefly, M is a symmetric mass matrix which gives the kinetic
energy of the bicycle system at zero forward speed as q̇T Mq̇/2. The damping-like
(there is no real damping) matrix C = vC1 is linear in the forward speed v and
captures skew-symmetric gyroscopic torques due to steer and lean rates. C1 also
captures inertial reactions due to steer rate: part from the lateral acceleration due
to rear-wheel yaw rate (path curvature) and part from system yaw acceleration. The
stiffness matrix K is the sum of two parts: a velocity-independent symmetric part
gK0 proportional to the gravitational acceleration, which can be used to calculate
changes in potential energy with qT [gK0]q/2, and a part v 2K2 which is quadratic
in the forward speed and is due to gyroscopic and centrifugal effects. The matrix
subscripts match the exponents of the v multipliers.

Equation (5.3) above, with terms defined in Appendix A, is the core of this
paper.

6. Benchmark model and solutions

To facilitate comparisons with other formulations we have defined a benchmark
bicycle with all parameter values given in table 1. The parameter values were chosen
to minimize the possibility of fortuitous cancellation that could occur if used in an
incorrect model. We also wanted numbers that could easily be described precisely.
In the benchmark bicycle the two wheels are different in all properties and no two
angles, masses or distances match. A second simpler benchmark is in Supplementary
Appendix 5.

(a) Coefficients of the linearized equations of motion

Substitution of the values of the design parameters for the benchmark bicycle
from table 1 in the expressions from Appendix A results in the following values for
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the entries in the matrices in the equations of motion (5.3):

M =

[

80.817 22 2.319 413 322 087 09

2.319 413 322 087 09 0.297 841 881 996 86

]

, (6.1)

K0 =

[

−80.95 −2.599 516 852 498 72

−2.599 516 852 498 72 −0.803 294 884 586 18

]

, (6.2)

K2 =

[

0 76.597 345 895 732 22

0 2.654 315 237 946 04

]

, and (6.3)

C1 =

[

0 33.866 413 914 924 94

−0.850 356 414 569 78 1.685 403 973 975 60

]

. (6.4)

To serve as a precise benchmark, the coefficients are given with 14 decimal places
(trailing zeros suppressed) above and elsewhere. Many-digit agreement with results
obtained by other means provides near certainty that there is also an underlying
mathematical agreement, even if that agreement is not apparent analytically.

(b) Linearized stability, eigenvalues for comparison

The characteristic equation eigenvalues are independent of coordinate choice and
equation form; any non-singular change of variables yields equations with the same
eigenvalues. Thus eigenvalues serve as convenient benchmark results, permitting
comparison between different analyses. The eigenvalues are calculated by assuming
an exponential solution of the form q = q0 exp(λt) for the homogeneous equations
(f = 0 in equations 5.3). This leads to the characteristic polynomial equation,

det
(

Mλ2 + vC1λ+ gK0 + v 2K2

)

= 0, (6.5)

which is quartic in λ. After substitution of the expressions from Appendix A, the
coefficients in this quartic polynomial become complicated expressions of the 25
design parameters, gravity and speed v. The zeros λ of the characteristic poly-
nomial for a range of forward speeds are shown in figure 3. Eigenvalues with a
positive real part correspond to unstable motions, whereas eigenvalues with a neg-
ative real part correspond to asymptotically stable motions for the corresponding
mode. Imaginary eigenvalues correspond to oscillatory motions. As mentioned in
§4 c, the time-reversability of this system leads to a symmetry evident in the char-
acteristic equation (6.5): if (v, λ) is a solution then (−v,−λ) is also a solution. This
means that figure 3 is point symmetric about the origin as revealed in figure 9 of
Åström et al. (2005).

This fourth order system has four distinct eigenmodes except at special param-
eter values associated with multiple roots. A complex (oscillatory) eigenvalue pair
is associated with a pair of complex eigenmodes. At high enough speeds, the two
modes most significant for stability are traditionally called the capsize mode and
weave mode. The capsize mode corresponds to a real eigenvalue with eigenvector
dominated by lean: when unstable, a capsizing bicycle leans progressively into a
tightening spiral with steer and lean both increasing proportionally as it falls over.
The weave mode is an oscillatory motion in which the bicycle steers sinuously about
the headed direction with a slight phase lag relative to leaning. The third eigenvalue
is large, real and negative. It corresponds to the castering mode which is dominated
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Figure 3. Eigenvalues λ from the linearized stability analysis for the benchmark bicycle
from figure 1 and table 1 where the solid lines correspond to the real part of the eigenvalues
and the dashed line corresponds to the imaginary part of the eigenvalues, in the forward
speed range of 0 ≤ v ≤ 10 m/s. The speed range for the asymptotic stability of the
benchmark bicycle is vw < v < vc. The zero crossings of the real part of the eigenvalues
are for the weave motion at the weave speed vw ≈ 4.3m/s and for the capsize motion at
capsize speed vc ≈ 6.0 m/s, and oscillations emerge at the real double root at vd ≈ 0.7 m/s.
For accurate eigenvalues and transition speeds see table 2.

by steer in which the front ground contact follows a tractrix-like pursuit trajectory,
like the straightening of a swivel wheel under the front of a grocery cart.

At near-zero speeds, typically 0 < v < 0.5 m/s, there are two pairs of real eigen-
values. Each pair consists of a positive and a negative eigenvalue and corresponds
to an inverted-pendulum-like falling of the bicycle. The positive root in each pair
corresponds to falling, whereas the negative root corresponds to the time reversal
of this falling (i.e., rising). For the benchmark bicycle here, when speed is increased
to vd ≈ 0.7m/s two real eigenvalues coalesce and then split to form a complex
conjugate pair; this is where the oscillatory weave motion emerges. At first this
motion is unstable but at vw ≈ 4.3 m/s, the weave speed, these eigenvalues cross
the imaginary axis in a Hopf bifurcation (Strogatz, 1994) and this mode becomes
stable. At a higher speed the capsize eigenvalue crosses the origin in a pitchfork
bifurcation at vc ≈ 6.0 m/s, the capsize speed, and the bicycle becomes mildly un-
stable (see Basu-Mandal et al. , 2007). The speed range for which the uncontrolled
bicycle shows asymptotically stable behaviour, with all eigenvalues having nega-
tive real parts, is vw < v < vc. For comparison by future researchers, benchmark
eigenvalues are presented at various forward speeds in table 2.

7. Validation of the linearized equations of motion

The linearized equations of motion here, equation (5.3) with the coefficients as
presented in Appendix A, have been derived by pencil and paper in two ways (Pa-
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Table 2. Some characteristic values for the forward speed v and the eigenvalues λ from the
linearized stability analysis for the benchmark bicycle from figure 1 and table 1. Fourteen
digit results are presented for benchmark comparisons. (a) v = 0, weave speed vw, capsize
speed vc and the speed with a double root vd. In the forward speed range of 0 ≤ v ≤ 10
m/s (b) Complex (weave motion) eigenvalues λweave, and (c) Real eigenvalues λ.

(a)

v [m/s] λ [1/s]

v = 0 λs1 = ±3.131 643 247 906 56
v = 0 λs2 = ±5.530 943 717 653 93

vd = 0.684 283 078 892 46 λd = 3.782 904 051 293 20
vw = 4.292 382 536 341 11 λw = 0 ± 3.435 033 848 661 44 i
vc = 6.024 262 015 388 37 0

(b)

v Re(λweave) Im(λweave)
[m/s] [1/s] [1/s]

0 – –
1 3.526 961 709 900 70 0.807 740 275 199 30
2 2.682 345 175 127 45 1.680 662 965 906 75
3 1.706 756 056 639 75 2.315 824 473 843 25
4 0.413 253 315 211 25 3.079 108 186 032 06
5 −0.775 341 882 195 85 4.464 867 713 788 23
6 −1.526 444 865 841 42 5.876 730 605 987 09
7 −2.138 756 442 583 62 7.195 259 133 298 05
8 −2.693 486 835 810 97 8.460 379 713 969 31
9 −3.216 754 022 524 85 9.693 773 515 317 91

10 −3.720 168 404 372 87 10.906 811 394 762 87

(c)

v λcapsize λcastering

[m/s] [1/s] [1/s]

0 −3.131 643 247 906 56 −5.530 943 717 653 93
1 −3.134 231 250 665 78 −7.110 080 146 374 42
2 −3.071 586 456 415 14 −8.673 879 848 317 35
3 −2.633 661 372 536 67 −10.351 014 672 459 20
4 −1.429 444 273 613 26 −12.158 614 265 764 47
5 −0.322 866 429 004 09 −14.078 389 692 798 22
6 −0.004 066 900 769 70 −16.085 371 230 980 26
7 0.102 681 705 747 66 −18.157 884 661 252 62
8 0.143 278 797 657 13 −20.279 408 943 945 69
9 0.157 901 840 309 17 −22.437 885 590 408 58

10 0.161 053 386 531 72 −24.624 596 350 174 04

padopoulos 1987, Meijaard 2004), and agree exactly with some of the past literature,
see §2. We have also checked equation coefficients via the linearization capability
of two general non-linear dynamics simulation programs described below. Compar-
isons with the work here using non-linear simulations have also been performed by
Lennartsson (2006 — personal communication, based on Lennartsson 1999) and
Basu-Mandal et al. (2007). Finally, in the self-stable speed range steering and lean
transients can be measured on a physical bicycle with narrow high-pressure tires.
Kooijman et al. (2007) measured the mass and geometry parameters on a riderless
bicycle and found good comparison between the experimentally measured eigenval-
ues and the eigenvalues predicted by the formulas here.
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(a) Equations of motion derived with the numeric program SPACAR

SPACAR is a program system for dynamic simulation of multibody systems
developted by Van der Werff (1977), Jonker (1988), Jonker & Meijaard (1990),
Meijaard (1991), Schwab (2002) and Schwab & Meijaard (2003). SPACAR is based
on finite element principles laid out by Besseling (1964). SPACAR handles systems
of rigid and flexible bodies connected by various joints in both open and closed
kinematic loops, and where parts may have rolling contact. SPACAR generates nu-
merically, and solves, full non-linear dynamics equations using minimal coordinates
(constraints are eliminated). The SPACAR model used in this paper uses the rigid
body, point mass, hinge and rolling-wheel contact features of the program (Schwab
& Meijaard 1999, 2003). SPACAR can also find the numeric coefficients for the lin-
earized equations of motion based on a semi-analytic linearization of the non-linear
equations. As determined by SPACAR, the entries in the matrices of the linearized
equations of motion (5.3) agree to 14 digits with the values presented in §6 a. See
Supplementary Appendix 2 for more about the SPACAR model.

(b) Equations of motion derived with the symbolic program AutoSim

We also derived the non-linear governing equations using the multibody dy-
namics program AutoSim, version 2.80 (Sayers 1991a,b). AutoSim is a Lisp (Steele
1990) program mostly based on Kane’s (1968) approach. It consists of function defi-
nitions and data structures allowing the generation of symbolic equations of motion
of rigid-body systems. AutoSim works best for systems of objects connected with
prismatic and revolute joints arranged with the topology of a tree (no loops). Au-
toSim generates equations in the form

q̇ = S(q, t)u, u̇ = [M(q, t)]−1Q(q,u, t). (7.1)

Here, q are the generalized coordinates, u are the generalized velocities, S is the
kinematic matrix that relates the rates of the generalized coordinates to the gen-
eralized speeds, M is the system mass matrix, and Q contains all force terms and
velocity dependent inertia terms. Additional constraints are added for closed kine-
matic loops, special joints and non-holonomic constraints. For example, the closed
loop holonomic constraint for both bicycle wheels touching the ground cannot be
solved simply in symbolic form for the dependent coordinates, requiring the solution
of a quartic polynomial equation. An iterative numerical solution for this constraint
was used, destroying the purely symbolic nature of the equations.

In general, the standard linearization procedure of AutoSim is not applicable for
systems with closed loops. However, in the present case the dependent pitch angle
is zero to first order and no difficulties arise. The final AutoSim-based linearization
output consists of a MatLab script file that numerically calculates the matrices of
the linearized equations. The entries in the matrices of the linearized equations of
motion (5.3) as determined by the program AutoSim agree to 14 digits with the
values presented in §6 a. More details about the AutoSim verification are given in
Supplementary Appendix 3.
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Figure 4. Non-linear dynamic response of the benchmark bicycle from figure 1 and
table 1, with the angular lean velocity φ̇, the angular steering velocity δ̇, and
the forward speed v = −θ̇RrR for the initial conditions: (φ, δ, θR) = (0, 0, 0) and
(φ̇, δ̇, v) = (0.5 rad/s, 0, 4.6 m/s) for a time period of 5 seconds.

8. Energy conservation and asymptotic stability

When an uncontrolled bicycle is within its stable speed range, lean and steer per-
turbations die away in a seemingly damped fashion. However, the system has no
true damping and conserves energy. The energy in the lean and steer oscillations is
transferred to the forward speed rather than being dissipated. As the forward speed
is affected only to second order, linearized equations do not capture this energy con-
servation. Therefore a non-linear dynamic analysis with SPACAR was performed on
the benchmark bicycle model to demonstrate the flow of energy from lateral pertur-
bations into forward speed. The initial conditions at t = 0 are the upright reference
position (φ, δ, θR) = (0, 0, 0) at a forward speed of v = 4.6 m/s, which is within the
stable speed range of the linearized analysis, and a lean rate of φ̇ = 0.5 rad/s. In
the full non-linear equations the final upright forward speed is augmented from the
initial speed by an amount determined by the energy in the lateral perturbation.
In this case the speed-up was about 0.022m/s. Figure 4 shows this small increase
in the forward speed v while the lateral motions die out, as expected. Figure 4 also
shows that the period for the lean and steer oscillations is approximately T0 = 1.60
s, which compares well with the 1.622 s from the linearized stability analysis. The
lack of agreement in the second decimal place is from finite-amplitude effects, not
numerical accuracy issues. When the initial lateral velocity is decreased by a factor
of 10 the period of motion matches the linear prediction to 4 digits. The steering
motion δ̇ has a small phase lag relative to the lean motion φ̇, visible in the solution
in figure 4.

9. Conclusions, discussion and future work

We have presented reliable equations for a well-delineated model for more-deeply
studying controlled and uncontrolled stability of a bicycle. The equations of mo-
tion, equation (5.3) with Appendix A are buttressed by a variety of historical and
modern-simulation comparisons and, we feel, can be used with confidence. They
can also be used as a check for those who derive their own equations by comparison
to:
a) the analytic form of the coefficients in equation (5.3) with terms defined in Ap-
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pendix A, or
b) the numerical value of the coefficients in equation (5.3) using either the general
benchmark bicycle parameters of table 1, or the simpler set in the Supplementary
Appendix 5, or
c) the tabulated eigenvalues, or
d) the speed range of self-stability for the benchmark parameters.

This paper firms up Carvallo’s discovery in 1897 that asymptotic self-stability
of an uncontrolled bicycle is explicable with a sufficiently complex conservative
rigid body dynamics model. It only narrowly answers the question “How does an
uncontrolled bicycle stay up?” by showing that it follows from the equations. A
simple explanation does not seem possible because the lean and steer are coupled
by a combination of several effects including gyroscopic precession, lateral ground-
reaction forces at the front wheel ground contact point trailing behind the steering
axis, gravity and inertial reactions from the front assembly having centre-of-mass
offset from the steer axis, and from effects associated with the moment of inertia
matrix of the front assembly.

The equations here can be the basis for future work addressing how bicycle self-
stability does and does not depend on the bicycle design parameters. For example,
we hope to dispel some bicycle mythology about the need for mechanical trail or
gyroscopic wheels for bicycle self-stability.
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Appendices

These main appendices include
A) Definitions of the coefficients used in the equations of motion, and
B) A brief derivation of the governing equations.

Additional supplementary appendices, not printed with the main paper, include
1) A review of the history of bicycle dynamics studies,
2) A description of the SPACAR validation,
3) A description of the AutoSim validation,
4) Explanation of the decoupling of lateral from forward motion, and
5) A reduced benchmark for evaluating simpler models.

Appendix A. Coefficients of the linearized equations

Here we define the coefficients in equation (5.3). These coefficients and various
intermediate variables are expressed in terms of the 25 design parameters (as well
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as v and g) of table 1 and figure 1. Some intermediate terms defined here are
also used in the derivation of the equations of motion in Appendix B. We use the
subscript R for the rear wheel, B for the rear frame incorporating the rider Body, H
for the front frame including the Handlebar, F for the front wheel, T for the Total
system, and A for the front Assembly which is the front frame plus the front wheel.
The total mass and the corresponding centre of mass location (with respect to the
rear contact point P) are

mT = mR +mB +mH +mF, (A 1)

xT = (xBmB + xHmH + wmF)/mT, (A 2)

zT = (−rRmR + zBmB + zHmH − rFmF)/mT. (A 3)

For the system as a whole, the relevant mass moments and products of inertia with
respect to the rear contact point P along the global axes are

ITxx = IRxx + IBxx + IHxx + IFxx +mRr
2
R +mBz

2
B +mHz

2
H +mFr

2
F, (A 4)

ITxz = IBxz + IHxz −mBxBzB −mHxHzH +mFwrF. (A 5)

The dependent moments of inertia for the axisymmetric rear wheel and front wheel
are

IRzz = IRxx, IFzz = IFxx. (A 6)

Then the moment of inertia for the whole bicycle along the z-axis is

ITzz = IRzz + IBzz + IHzz + IFzz +mBx
2
B +mHx

2
H +mFw

2. (A 7)

The same properties are similarly defined for the front assembly A:

mA = mH +mF, (A 8)

xA = (xHmH + wmF)/mA, zA = (zHmH − rFmF)/mA. (A 9)

The relevant mass moments and products of inertia for the front assembly with
respect to the centre of mass of the front assembly along the global axes are

IAxx = IHxx + IFxx +mH(zH − zA)2 +mF(rF + zA)2, (A 10)

IAxz = IHxz −mH(xH − xA)(zH − zA) +mF(w − xA)(rF + zA), (A 11)

IAzz = IHzz + IFzz +mH(xH − xA)2 +mF(w − xA)2. (A 12)

Let λ = (sinλ, 0, cosλ)T be a unit vector pointing down along the steer axis where
λ is the angle in the xz-plane between the downward steering axis and the +z
direction. The centre of mass of the front assembly is ahead of the steering axis by
perpendicular distance

uA = (xA − w − c) cosλ− zA sinλ. (A 13)

For the front assembly three special inertia quantities are needed: the moment of
inertia about the steer axis and the products of inertia relative to crossed, skew axes,
taken about the points where they intersect. The latter give the torque about one
axis due to angular acceleration about the other. For example, the λx component is
taken about the point where the steer axis intersects the ground plane. It includes
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a part from IA operating on unit vectors along the steer axis and along x, and also
a parallel axis term based on the distance of mA from each of those axes.

IAλλ = mAu
2
A + IAxx sin2 λ+ 2IAxz sinλ cosλ+ IAzz cos2 λ, (A 14)

IAλx = −mAuAzA + IAxx sinλ+ IAxz cosλ, (A 15)

IAλz = mAuAxA + IAxz sinλ+ IAzz cosλ. (A 16)

The ratio of the mechanical trail (i.e., the perpendicular distance that the front
wheel contact point is behind the steering axis) to the wheel base is

µ = (c/w) cosλ. (A 17)

The rear and front wheel angular momenta along the y-axis, divided by the forward
speed, together with their sum form the gyrostatic coefficients:

SR = IRyy/rR, SF = IFyy/rF, ST = SR + SF. (A 18)

We define a frequently appearing static moment term as

SA = mAuA + µmTxT. (A 19)

The entries in the linearized equations of motion can now be formed. The mass
moments of inertia

Mφφ = ITxx , Mφδ = IAλx + µITxz,

Mδφ = Mφδ , Mδδ = IAλλ + 2µIAλz + µ2ITzz , (A 20)

are elements of the symmetric mass matrix M =

[

Mφφ Mφδ

Mδφ Mδδ

]

. (A 21)

The gravity-dependent stiffness terms (to be multiplied by g) are

K0φφ = mTzT , K0φδ = −SA,

K0δφ = K0φδ , K0δδ = −SA sinλ, (A 22)

which form the stiffness matrix K0 =

[

K0φφ K0φδ

K0δφ K0δδ

]

. (A 23)

The velocity-dependent stiffness terms (to be multiplied by v2) are

K2φφ = 0 , K2φδ = ((ST −mTzT)/w) cosλ,

K2δφ = 0 , K2δδ = ((SA + SF sinλ)/w) cosλ, (A 24)

which form the stiffness matrix K2 =

[

K2φφ K2φδ

K2δφ K2δδ

]

. (A 25)

In the equations we use K = gK0 + v 2K2. Finally the “damping” terms are

C1φφ = 0, C1φδ = µST + SF cosλ+ (ITxz/w) cosλ− µmTzT, (A 26)

C1δφ = −(µST + SF cosλ), C1δδ = (IAλz/w) cosλ+ µ(SA + (ITzz/w) cosλ),

which form C1 =

[

C1φφ C1φδ

C1δφ C1δδ

]

where we use C = vC1. (A 27)
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Appendix B. Derivation of the linearized equations of
motion

The following brief derivation of the linearized equations of motion is based on
Papadopoulos (1987). All derivations to date, including this one, involve ad hoc

linearization as opposed to linearization of full non-linear equations. No-one has
linearized the full implicit non-linear equations (implicit because there is no reason-
ably simple closed form expression for the closed kinematic chain) into an explicit
analytical form either by hand or computer algebra.

For a bicycle freely rolling forward on a plane, slightly perturbed from upright
straight ahead motion, we wish to find the linear equations of motion governing the
two lateral degrees of freedom: rightward lean φ of the rear frame, and rightward
steer δ of the handlebars. The linearized equation of motion for forward motion is
simple planar mechanics and has already been given in equation (5.2).

We take the bicycle to be near to and approximately parallel to the global
x-axis. The bicycle’s position and configuration, with respect to lateral linearized
dynamics, are defined by the variables yP, ψ, φ and δ. In this derivation we assume
not only φ and δ but also ẏP/v ≈ ψ small, such that only first order consequences
of the configuration variables need be kept.

Forces of importance to lateral linearized dynamics include: gravity at each
body’s mass centre, positive in the +z direction; vertical ground reaction force
at the front wheel: −mTgxT/w; horizontal ground reaction force FFy at the front
wheel, approximately in the y direction; a lean moment TBφ applied to the rear
frame and tending to lean the bicycle to the right about the line connecting the
wheel contacts; a steer torque pair THδ, applied positively to the handlebars so as
to urge them rightward, and also applied negatively to the rear frame.

Initially we replace the non-holonomic rolling constraints with to-be-determined
horizontal forces at the front and rear contacts that are perpendicular to the wheel
headings. We apply angular momentum balance to various subsystems, each about
some fixed axis u,

∑

i∈{bodies}

[ri × aimi + Iiω̇i + ωi × (Iiωi)] · u =
∑

j∈{applied forces}

[rj × Fj ] · u.

The left side of each equation is the rate of change of angular momentum about
the given axis. The right side is the torque of the external forces (gravity, loads
and ground reactions). The positions ri and rj of the bodies’ centres of mass and
of applied forces, respectively, are relative to any point on the axis. The bodies’
angular velocities and accelerations ωi, ω̇i and ai are expressed in terms of first
and second derivatives of lateral displacement, yaw, lean and steer.

Lean angular momentum balance for the whole bicycle about a fixed axis in
the ground plane that is instantaneously aligned with the line where the rear frame
plane intersects the ground (this axis does not generally go through the front ground
contact point) gives:

−mTÿPzT + ITxxφ̈+ ITxzψ̈ + IAλxδ̈ + ψ̇vST + δ̇vSF cosλ

= TBφ − gmTzTφ+ gSAδ. (B 1)

In addition to the applied TBφ the right-hand side has a lean moment from gravi-
tational forces due to lateral lean- and steer-induced sideways displacement of the
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bicycle parts, and a term due to steer-induced lateral displacement of the front-
contact vertical ground reaction relative to the axis. Next, yaw angular momentum
balance for the whole bicycle about a fixed vertical axis that instantaneously passes
through the rear wheel contact gives

mTÿPxT + ITxzφ̈+ ITzzψ̈ + IAλz δ̈ − φ̇vST − δ̇vSF sinλ = wFFy. (B 2)

The only external yaw torque is from the yet-to-be-eliminated lateral ground force
at the front contact. Lastly, steer angular momentum balance for the front assembly
about a fixed axis that is instantaneously aligned with the steering axis gives

mAÿPuA + IAλxφ̈+ IAλzψ̈ + IAλλδ̈ + vSF(−φ̇ cosλ+ ψ̇ sinλ)

= THδ − cFFy cosλ+ g(φ+ δ sinλ)SA. (B 3)

In addition to the applied steering torque THδ there are torques from lateral (yet to
be determined) constraint force and from vertical forces (downward gravity force
and upward reaction force) on the front assembly leaned by angle φ+ δ sinλ. Com-
bining equations (B 2) and (B 3) eliminates the unknown front-wheel lateral reaction
force FFy, leaving two equations. Then using the rolling constraints (given below)
eliminates ψ and yP and their time derivatives, leaving just the lean and steer and
their time derivatives as the unknown variables.

Each rolling-contact lateral constraint is expressed as a rate of change of lateral
position due to velocity and heading (yaw). For the rear,

ẏP = vψ. (B 4)

Equivalently for the front, where yQ = yP + wψ − cδ cosλ, and the front frame
heading is the rear frame yaw augmented by the true (ground) steer angle:

d(yP + wψ − cδ cosλ)/dt = v(ψ + δ cosλ). (B 5)

We subtract (B 4) from (B 5) to get an expression for ψ̇ in terms of δ and δ̇ and
then differentiate to reveal the dependence of ψ̇ and ψ̈ on steer (δ, δ̇ & δ̈):

ψ̇ = ((vδ + cδ̇)/w) cosλ ⇒ ψ̈ = ((vδ̇ + cδ̈)/w) cosλ. (B 6)

Finally we differentiate (B 4) and use (B 6) to get an expression for ÿP,

ÿP = ((v2δ + vcδ̇)/w) cosλ. (B 7)

Substituting (B 6) and (B 7) into (B 1), we get an expression in φ, φ̈ and δ, δ̇ and δ̈,
with a right-hand side equal to TBφ. This is called the lean equation. Eliminating
FFy from (B 2) and (B 3), then again substituting (B 6) and (B 7), we get another
expression in φ and δ and their derivatives, where the right-hand side is THδ (the
steer torque). This is called the steer equation. These two equations are presented
in matrix form in (5.3).

Note that from general dynamics principles we know that the forcing terms can
be defined by virtual power. Thus we may assume that the torques used in these
angular momentum equations may be replaced with those defined by the virtual
power equation (5.1). Therefore, where this derivation uses the torques TBφ and
THδ the generalized forces Tφ and Tδ actually apply.
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Since ψ and yP do not appear in the final equations, there is no need for the
bicycle to be aligned with the global coordinate system used in figure 2. Thus
x, y and ψ can be arbitrarily large and the bicycle can be at any position on the
plane at any heading. For simulation and visualization purpose we can calculate
the ignorable coordinates xP, yP and ψ by integration. The equation for the yaw
angle ψ is the first of (B 6). Then the rear contact point is described by

ẋP = v cosψ, ẏP = v sinψ. (B 8)

Note the large-angle form for ẏP here as opposed to the small angle form (B 4)
used to derive the equations of motion. (This situation is somewhat analogous to,
say, the classical elastica where the displacements and angles used in the strain
calculation are small yet the displacements and angles of the elastica overall can be
arbitrarily large.)

Intermediate results may be used to calculate horizontal lateral contact forces,
where equation (B 2) determines the horizontal lateral force at the front contact.
Lateral linear momentum balance in terms of ÿP , φ̈, ψ̈ and δ̈ can be used to find the
horizontal lateral force at the rear wheel contact.

References

Appell, P. E. 1896 Traité de mécanique rationnelle, vol. II, pp. 297–302. Paris: Gauthier-
Villars.
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Carvallo, E. 1899 Théorie du mouvement du monocycle et de la bicyclette. Paris: Gauthier-
Villars. (Submitted in 1897 for the Prix Fourneyron, awarded shared second place in
1898.)

Collins, R. N. 1963 A mathematical analysis of the stability of two wheeled vehicles. Ph.D.
thesis, Dept of Mechanical Engineering, University of Wisconsin, Madison.

Cox, A. J. 1998 Angular momentum and motorcycle counter-steering: a discussion and
demonstration. Amer. J. Phys. 66, 1018–1020.

Den Hartog, J. P. 1948 Mechanics, art. 61. New York and London: McGraw-Hill.

For Proc. R. Soc. A. 463, 2007



26 J. P. Meijaard and others

Dikarev, E. D., Dikareva, S. B. & Fufaev N. A. 1981 Effect of inclination of steering axis
and of stagger of the front wheel on stability of motion of a bicycle. Izv. Akad. Nauk
SSSR Mekh. Tverd. Tela 16, 69–73. (Transl. Mech. Solids 16, 60–63.)
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Supplementary Appendices
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Linearized dynamics equations for the balance and steer of

a bicycle: a benchmark and review

by

J. P. Meijaard, Jim M. Papadopoulos, Andy Ruina and A. L. Schwab

Proceedings of the Royal Society Series A, June 2007

Contents of this supplement

Appendices in the 28 page main body of the paper (not in this supplement) are

A) Definitions of the coefficients used in the equations of motion, and

B) A brief derivation of the governing equations.

These supplementary appendices (starting here on page 29) include:

1) A detailed history of bicycle dynamics studies with an expanded bibliography
(all references from the main text and some more that we did not have space
for, some with annotations).

2) A more detailed explanation of the verification of the linearized equations
which was done with the aid of the numerical dynamics package SPACAR.

3) A more detailed explanation of the verification of the linearized equations
which was done using the symbolic algebra package AutoSim.

4) A more detailed explanation of how lateral symmetry decouples lateral and
forward motion and gives v̇ = 0 as one of the linearized equations of motion.

5) A reduced benchmark for testing less general bicycle simulations.
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1. History of bicycle steer and dynamics studies

“Even now, after we’ve been building them for 100 years, it’s very dif-

ficult to understand just why a bicycle works - it’s even difficult to for-

mulate it as a mathematical problem.” — Freeman Dyson interviewed
by Stewart Brand in Wired News, February 1998.

This appendix builds on Hand (1988) and is the source of the brief literature review
in the main body of the paper. We divide the literature on bicycle dynamics into
three categories:

a) Qualitative explanations of stability and self-stability that do not use the
differential equations of motion.

b) Dynamical analyses that use any of a number of simplifications precluding
the study of hands-free self-stability.

c) Equations of motion describing a model that has, in principle, enough com-
plexity to predict hands-free self-stability.

The historical discussion below is in chronological order within each of the three
categories above.

(a) Qualitative discussions of stability

Basic features of balance by means of controlled steering are accessible without
detailed equations, and are reasonably described in many papers. In contrast, the
self-stability of a bicycle involves complex dynamic phenomena that seem to us to
be beyond precise description without appeal to correct governing equations. Thus
the qualitative discussions of self-stability below are necessarily less definitive.

1866 Lallement’s velocipede-improvement U.S. Patent, which is on the addition of
front-wheel pedals (as opposed to pushing the feet on the ground), includes
a concise explanation of balancing by steering: “If the carriage is inclined to
lean to the right, turn the wheel [to the right], which throws the carriage
over to the left...”. Within five years, the U. S. patent literature begins to
show pictures of bicycles further improved with trail and an inclined steering
axis. Whether or not these improvements conveyed genuine self-stability is
not known.

1869 William Rankine, engineer and thermodynamics theorist, presents semi-
quantitative observations on lean and steer of a velocipede. This seems to
be the first description of ‘countersteering’ — briefly turning to the left to
generate the rightward lean necessary for a steady rightward turn. The Wright
brothers were later obsessed with this counter-steering aspect of bicycle con-
trol (see quote in, e.g., Åström et al. (2005)). Rankine discusses steer only by
means of rider control and seems to have been unaware of the possibility of
self-stability.

1896 Archibald Sharp, an engineering lecturer at what was to become Imperial
College, publishes his book covering nearly all technical aspects of bicycle
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theory and practice, including sections on stability for which he earned an
honorable mention in the 1898 Prix Fourneyron (see Bourlet below). Sharp
also later authored the classic 11th edition Britannica (1910) entry on bicy-
cles. In calculating the handlebar torque required to maintain a steady turn,
Sharp’s equation (6) is wrong, first by the typographical error of a sign change
in the second parentheses, and second by neglecting the centrifugal force on
the mass centre of the front assembly. Sharp also neglects precessional torque
on the front wheel. However, Sharp explicitly recognizes the mechanical trail
and implicitly recognizes the quantity we call SA.

Sharp developed his equation to investigate no-hands riding. Sharp concludes,
correctly in part (see Jones 1970 below), that the no-hands rider exercises con-
trol of steering through upper-body lean causing frame lean, leading to gyro-
scopic precession of the front wheel. A rider can thus control this precession
and make corrective turns much like he or she would with direct handlebar
torques. Archibald Sharp seemed unaware of the possibility of bicycle self-
stability.

1896 Appell, in his dynamics textbook, summarizes Bourlet’s analysis (see cate-
gory (b) below) of balancing and steering a velocipede. Surprisingly, this mas-
ter of the differential equations governing non-holonomic dynamics includes
none in his discussion of bicycles.

The later 1890s are a period when numerous mathematical analyses are initiated,
as described below. Appell mentions a few analyses both in later editions of his
textbook (1899–1952), and in a monograph (1899) on the non-holonomic mechanics
of rolling bodies.

1920 Grammel provides some discussion of gyroscopic moments in bicycling, but
provides no equations of motion.

1929 Wallace’s long technical paper on motorcycle design contains thoughtful qual-
itative discussions on his predictions about the handling characteristics of var-
ious motorcycle designs (pp. 177–184). He examines steer torque, including
the contribution of toroidal tires and gyroscopic torques. Wallace’s analysis
of non-linear geometric effects (pp. 185–212) erroneously assumes no pitch of
the rear frame due to steering.

1946 Maunsell quantitatively estimates the relative sizes of many of the potential
effects that can cause an uncontrolled bicycle to turn into a fall. Although
the paper does not use complex modelling, it clearly lays out and partially
answers many questions about bicycle stability. Maunsell is candid about the
difficulty of using full dynamics equations “I have not yet had time to follow
out in full the long and involved calculations of [Carvallo’s] paper... I hope to
do so in the future.” (Carvallo is discussed in section (c) below).

1970 David E. H. Jones’s Physics Today article (re-printed in 2006) is perhaps the
single best-known paper on bicycle stability. With simple experiments Jones
showed that, for the bicycles he tried, both front-wheel spin momentum and
positive mechanical trail were needed for self-stability. Jones also observed
that a rider can easily balance almost any bicycle that was not self-stable by
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turning the handlebars appropriately. But when riding no-hands, Jones had
difficulty stabilizing a bicycle whose front-wheel gyroscopic terms were can-
celled by an added, counter-spinning wheel. And Jones was unable to master
no-hands balance of a bicycle with negative trail. Jones’s experimental obser-
vations indicate useful trends, but do not seem to represent precise parameter-
space boundaries of what is or can be stable or controlled. On the theoretical
side Jones wanted to counter the widely-quoted simple gyroscopic explana-
tions of no-hands bicycle control presented for example in Sharp (1896) above
and un-controlled no-hands bicycle stability presented, for example, in Klein
& Sommerfeld (1910). His experiments with a variety of bicycles pointed to
mechanical trail as another important factor in bicycle stability. Jones did
no dynamical modelling, and focused only on trail’s effect on steer torque
as a function of lean. His thought was that the “static” torque would define
the steering tendency for a leaned bicycle, and thereby explain self-stability.
In effect Jones explored only the gravitational-potential part of one entry
in the stiffness matrix, while ignoring the velocity-dependent centrifugal and
gyroscopic terms and the effects of front assembly mass placed ahead of the
steering axis. A variety of subsequent investigators have elaborated on Jones’s
non-dynamic potential-energy treatment.

1942–98 Various other qualitative discussions, none making use of already pub-
lished governing dynamics equations, were authored by Arthur T. Jones
(1942), Den Hartog (1948), Higbie (1974), Kirshner (1980), Le Hénaff (1987),
and Cox (1998). Most of these papers, somewhat like David E.H. Jones (1970),
describe one or another term in the dynamics equations (e.g., centripetal
forces or gyroscopic terms) but overstate, we think, their singular role in bi-
cycle stability.

1984 Foale’s book comprehensively explores factors affecting motorcycle handling.

1988 Olsen & Papadopoulos’ qualitative article discusses aspects of dynamic mod-
elling based on the uncontrolled bicycle equations in Papadopoulos (1987).

1993 Patterson developed a series of dynamically based design rules for improving
rider control authority.

1999 Cossalter presented an entire book with qualitative explanations of his
decades of quantitative modelling work on motorcycle handling.

2004 Wilson’s Bicycling Science includes a chapter by Papadopoulos which qual-
itatively discusses bicycle stability.

(b) Simplified analyses that use dynamics

Simplified dynamic models have appeared from the mid 1890s to the present
day. These papers use one or more of the following three types of specializations:

i) Simplified geometry and/or mass distribution. In these models some col-
lection of the following assumptions are made:

• inertia axes of rear frame are vertical/horizontal
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• inertia axes of front frame are vertical/horizontal or aligned with steer
axis

• no spin angular momentum of wheels

• point masses for the frames and/or wheels

• massless wheels

• massless front assembly

• vertical steer axis

• zero trail

• vanishing wheel radii

Such simplified models are generally incapable of self-stability, as one can
deduce by analytical stability analysis of the more general model presented
here, reduced to these special cases.

ii) No steer dynamics because steer is fully controlled by the rider.
In these models balance is effected entirely as a result of rider-controlled
steering angle, and the steer angle δ has no uncontrolled dynamics. For these
models there is no need to derive the relatively less intuitive equation for
steer dynamics. Appropriately controlled steer angle is indeed the only way
to stabilize many simplified bicycles. Because velocipedes (primitive bicycles
with vertical steer axis, no trail, and front-assembly essentially centred on the
steer axis) were not self-stable, it is natural that all of the early mathematical
analyses incorporated a controlled-steering assumption.

Note that controlled-steer-angle treatments cannot illuminate a bicycle’s self
stability because, in the small-angle regime, a bicycle with locked steering has
no self stability. Many modern studies of controlled stability also reasonably
use one or more of the mechanical simplifications as described in (i) above.

iii) Mathematically simplified models. To make the mathematics more
tractable, or to illuminate controlling factors, some authors eliminate terms
from the equations in an ad hoc fashion. A possible consequence of such
mathematical, as opposed to mechanical, simplifications is that the resulting
equations may not describe any particular physical model, so that mechanics
based theorems (such as energy conservation) or intuitions may not apply.

A common geometric issue. Many of these simplified-dynamics analyses include
some non-linear terms (e.g., sinφ instead of φ). However, all purportedly non-linear
simplified-bicycle treatments of which we are aware, starting with Bourlet (1894),
do not actually write non-linear equations that correctly describe any mechanically
simplified model of a bicycle. That is, the equations are not a special or limiting
case of the equations of Whipple and his followers. In these treatments wheel base,
trail, frame pitch, path curvature and other such quantities are treated as being
independent of the lean angle, even for non-zero steer angle. That all these quantities
do actually vary with lean angle for an ideal bicycle is demonstrated by considering
a small leftward steer angle. As the lean angle goes to −90 degrees, with the bicycle
almost lying on its left side, the front contact point moves forward around the front
wheel approximately by 90 degrees, while the rear contact point moves backward
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around the rear wheel the same amount. This alters the wheel base length, the
angle between ground traces of the two wheels, and the trail. Depending on the
frame geometry, this lean also places the front contact well outside the rear frame’s
symmetry plane, and introduces substantial pitch of the rear frame about the rear
axle, relative to the ground trace of the rear wheel. Even the simplest bicycle
(with vertical steering axis, zero trail, and vanishing front-wheel radius) is subject
to at least an alteration of the front-wheel track direction, due to the lean of a
steered wheel. In particular for such a bicycle, the angle α that the front wheel
track makes with the line connecting rear and front wheel contacts should obey
cosφ tanα = tan δ rather than the commonly used α = δ (where δ is steer and φ is
lean).

In some cases the authors may be making conscious approximations that are
valid for modest lean angles, in some cases they are making mathematical models
that are not intended to literally describe any simplification of a bicycle, and in
some cases these seem to be errors. The resulting governing equations are sometimes
correct descriptions of an inverted pendulum mounted on a controlled tricycle. Such
a tricycle might be considered to be a simple model of a bicycle. But such a tricycle
is not any limiting case of the Whipple bicycle.

1894–1899 Mathematician Carlo Bourlet devotes several papers and both editions
of his encyclopedic bicycle treatise to the lateral balance of a steer-controlled
velocipede (vertical steer axis and no trail). All inertias have vertical principal
axes, and spin angular momentum of the wheels is included. The treatment is
largely non-linear, but has the front-contact geometry issues described above.
When linearized, his (1899b) final lean equation (29bis) lacks the gyroscopic
moment from steer rate, but is otherwise correct.

Bourlet considers steering moves that can eliminate a lean, or follow a path.
His final and most technical paper on bicycle dynamics (1899b) was awarded
the Prix Fourneyron (submitted 1897, awarded 1898). Bourlet claims to have
outlined the practical design factors leading to self-stability in another book
dedicated to the design of bicycles (which we have not been able to find), but
he does not address them analytically.

The Prix Fourneyron prize is offered biannually by the French Académie des Sci-
ences (Gauja, 1917). In 1897, the Fourneyron mechanics challenge was “Give the
theory of movement and discuss more particularly the conditions of stability of ve-
locipedic devices” and was later amplified to include “whether in a straight line or a
curve, on a flat plane or a slope.” Boussinesq and Léauté were on the prize commit-
tee, and Appell was interested in the entries. Bourlet, Sharp and Carvallo submitted
entries, as did others whose names and works are unfamiliar to us. Bourlet won the
1000-franc first place, Carvallo shared second (another 1000 francs) with Jacob and
Sharp received honourable mention. Other than this prize, we know nothing more
of Jabob’s work. Both Bourlet and Carvallo published their entries, and Appell
prominently cited these and other papers in more than one book. Shortly after the
prize was awarded, Boussinesq published his own thorough analysis, and Léauté
also published a note (which we have not seen). It seems that the dynamical anal-
ysis of bicycles is a French innovation. Bourlet (1894) may have started this, then
the Prix announcement produced a singular peak of bicycle research activity.
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1899 Physicist Joseph Boussinesq wrote two papers (1899a,b) (and four prior
‘notes’) on velocipede balance and control. These are similar in approach
and content to prior work by Bourlet but slightly anticipating Bourlet’s later
more sophisticated dynamical modelling. Boussinesq neglects gyroscopic con-
tributions expressed as E/R for each wheel, which Bourlet remarks correctly
is a minor effect for lean dynamics. Boussinesq also notes that the system’s
centre of mass can usually be displaced sideways slightly by upper-body lean
relative to the frame (This is the means by which an inverted double pen-
dulum can be balanced by actuation of the connecting hinge. This effect is
just as applicable to a bicycle that is not moving forward and is presumably
essentially irrelevant: very few people can balance a non-moving bicycle by
this means.). Self-stability was not addressed. The simplest point-mass bicy-
cle model (vertical steer axis, no wheel mass, zero-radius wheels, no trail, no
mass in the front assembly or equivalently mass balanced with respect to the
steer axis, and controlled steer) seems to be due to Boussinesq.

1899 G.R.R. Routh (son of famous dynamicist E.J. Routh) considers steering
strategies for lean stability and path following of a slightly more general
model of a velocipede than was considered by Bourlet (1899b) and Boussinesq
(1899a,b).

1910 Bouasse, in his dynamics textbook, reviews some geometric relations from
Bourlet (1899b), and presents the model and analysis of Boussinesq (1899a,b).

1915 Bower investigates the stability of an uncontrolled velocipede via linearized
equations that are missing terms (Hand, 1988). However, Bower’s central re-
sult, that such a bicycle has no self-stability, happens to be correct. Compara-
ble treatments without fully correct equations are also presented in Pearsall
(1922, citing Bower), Lowell & McKell (1982, citing Pearsall), and Fajans
(2000, citing Lowell & McKell).

1934 Lŏıcjanskĭı & Lur’e, in their textbook, study an uncontrolled velocipede. This
is cited by Letov (1959), Nĕımark & Fufaev (1972), and revisited in Lobas
(1978). We have not seen this book.

1948 Timoshenko & Young’s well-known dynamics text presents the Boussinesq
(simplest) bicycle analysis of Bouasse (1910).

1955 Haag independently derives bicycle equations of motion in his book, but
simplifies by inconsistently ignoring various terms involving trail, spin mo-
mentum, front assembly mass, cross terms in the potential energy, etc. The
resulting incorrect differential equations of a simplified bicycle model lead him
to conclude (incorrectly) that bicycle self-stability is never possible.

1959 Letov gives correct linearized lean equations for a Boussinesq bicycle, at-
tributing it to Lŏıcjanskĭı & Lur’e. Gyroscopic torques on the steering due
to lean rate are incorporated in the dynamics of the steer controller, with
reference to Grammel.

1967 Nĕımark & Fufaev, in their classic text (English translation,1972) on non-
holonomic dynamics consider the full Whipple model (see section (c) below).
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They then simplify to a velocipede model (vertical head, no trail, fore-aft
balanced front steering). In the velocipede model the only contribution to
self-correcting steer is gyroscopic precession due to lean, the basic mechanism
for no-hands but controlled stability discussed in, e.g., Sharp (1896). However,
Nĕımark & Fufaev also include linear viscous damping in the steering column.
Without this damping, the steer angle is proportional to the integral of the
lean angle. They mistakenly omit the mass from the second term in equation
(2.65) (English edition p. 354), leaving a dimensionally incorrect quantity ν to
propagate through to equations (2.67) and (2.68). However, the overall form
of their differential equations is correct. Even for this simple model they find
self-stability if there is sufficiently large steering friction, a result we trust
despite the algebra error noted above.

1995 Getz & Marsden consider the possibility of following an arbitrary path with-
out falling over, when not only the steering but also forward speed may be con-
trolled. Their simplified non-linear Boussinesq model incorporates no wheel
radius nor wheel inertias. Like some others before them (e.g. Bourlet 1894)
this paper makes geometric assumptions that are equivalent to modelling a
bicycle as an inverted pendulum mounted on a tricycle (see discussion above
on a “a common geometric issue”).

2005 One small part of the paper by Åström, Klein & Lennartsson treats a sim-
plified bicycle model. The paper also describes decades of experiments on
bicycle stability as well as the development of super-stable bicycles for teach-
ing disabled children to ride (see also Richard Klein’s web page, listed in the
bibliography for this paper). Åström et al. is also discussed briefly in section
(c) below.

The simplified model in Åström et al. is aimed at basic explanation of bicycle
control and self-stability. We comment here only on the sections relevant to
“Self-Stabilization” and not on the paper’s focus, which concerns control.

In Åström et al. the reductions leading to the simple model come in two
stages, mechanical and then mathematical. First Åström et al. assume that
the wheels have no spin momentum and are thus essentially skates. They also
assume that the front assembly has no mass or inertia. However, both non-zero
head angle and non-zero trail are allowed and both point-mass and general-
inertia rear-frame mass distributions are considered. Åström et al. then add
further mathematical simplifications by neglecting non-zero trail contribu-
tions except in the static (non-derivative) terms. This eliminates the steer
acceleration term in equation (14) therein (lean dynamics), and alters the
steer rate term. In equation (9) (steer dynamics), where all torques arise only
through trail, this eliminates the terms involving steer rate, steer acceleration,
and lean acceleration.

Their reduced second order unforced (uncontrolled) steer equation implies
that steer angle is proportional to lean angle (note the contrast with the
integral feedback implicit in Nĕımark & Fufaev above). The resulting system
is thus stabilized in the same way a skateboard is self-stable. In a skateboard
mechanical coupling in the front “truck” enforces steer when there is lean,
see Hubbard (1979) and pages 6 and 17 in Papadopoulos (1987). That bicycle
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lean and steer coupling might approximately reduce to the much simpler
skateboard coupling is certainly an attractive idea.

However, the governing stability equation in Åström et al. , equation (15)
appears to show the emergence of self-stability at high-enough speeds for quite
arbitrary bicycle parameters. Examination of the full fourth order equations
here (the pair of second order equations) applied to their simplified bicycle
(without their additional mathematical simplifications) seems to show that
stability is only obtained for special parameters. For example, the point-mass
version is never stable. An extended-mass version can be stable, but only
with a rather special mass distribution, as discussed in Papadopoulos (1987),
on page 6 and figure 3 therein. Even for those parameter values in which
their mechanical model can have self-stability it is not clear that having steer
proportional to lean is an appropriate description of self-steer dynamics. So
we have some doubt about the reduction of Åström et al. of even a simple
class of bicycle models to second order skateboard-like equations. Limebeer
and Sharp (2006) also question the conclusion of Åström et al. about the
central role of trail in stability.

2006 Limebeer & Sharp present a large colourful historical review of various issues
associated with bicycle and motorcycle handling, including anecdotes, simple
models and complex models. One small part of Limebeer & Sharp includes
an analysis of a Boussinesq-like simple bicycle. The non-linear lean equations
therein implicitly assume a zero-radius front wheel. Also, in the first lean
equation (4) the term (σ− φ̇/v) was mistyped and should be (σ− ψ̇/v), which
vanishes. Lean equation (5), and its linearization which is used for control
analysis, are fully correct.

(c) Equations of motion for a Whipple bicycle

Here we discuss literature on linear equations of motion for more general bicycle
models with uncontrolled steering. These are models that are similar to the Whipple
model used in this paper. Papers in which e.g. toroidal wheels, tire-slip models,
frame or rider elastic deformation, rider steering inputs or rider-controlled torso lean
were difficult to remove from the analysis are generally not discussed. Non-linear
treatments are not discussed systematically. The non-linear literature is further
reviewed in Basu-Mandal et al. (2007).

1897–1900 Carvallo shared second prize in the Prix Fourneyron (see discussion of
Bourlet in section (b) above), for a 186-page monograph on the dynamics of an
uncontrolled monocycle (a single wheel surrounding a rider) and bicycle. Car-
vallo was already an accomplished applied mathematician and mechanician
when he submitted this paper in 1897. As far as we know, this is the first gen-
uine analysis of bicycle self-stability and slightly precedes Whipple. Although
Carvallo’s bicycle is slightly specialized, relative to Whipple, by neglecting
the mass and moments of inertia of the front frame (in comparison to those
of the front wheel), his equations for his model are correct. Carvallo identified
the four standard eigenmodes, and presented equations for the upper (cap-
size) and lower (weave) limiting velocities for hands-free stability. Carvallo
mentions the use of Grassman’s geometric calculus, and stability calculations
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similar to Routh-Hurwitz. According to Carvallo, bicycle constructors of his
time recommended that the steer axis be designed to pass under the front
axle, half way between axle and ground, a feature approximately maintained
in present day bicycle designs.

1899 Francis J. W. Whipple, apparently unaware of Carvallo, undertakes the sec-
ond substantive analysis of the self-stability of a bicycle. Whipple was a Cam-
bridge University undergraduate at the time, and was a Second Wrangler in
the Tripos mathematics exam. Whipple later had a long career in mathe-
matical meteorology. See Limebeer & Sharp (2006) for a short biography.
Whipple’s model is equivalent to the model presented here. His paper was
awarded Honourable Mention for the prestigious Smith’s Prize. Whipple first
undertook the difficult task of a fully non-linear analysis, which was flawed by
an incorrect expression of the front-wheel ground–contact vertical constraint.
However, when linearized this error is irrelevant, and Whipple’s linearized
equations are correct, except for a few typographical errors. Whipple’s results
include scaling rules, the dynamic modes (nowadays known as weave and cap-
size), rider control inputs via torso lean, etc. Whipple also recognized that the
exponential decay of lean and steer pertubations is not inconsistent with en-
ergy conservation. He cites Bourlet. Because of ambiguity in submission and
publication times, Whipple is sometimes credited as the first to write equa-
tions of motion for a complex bicycle model, but it seems to us that Carvallo
was actually first. Although Whipple had the same editor as Routh, neither
cited the other.

Whipple and Carvallo laid solid foundations which have mostly been unused. De-
spite Carvallo being cited in two books by Appell, and both authors being cited by
Klein & Sommerfeld (1910), and mentioned both in the 11th edition Encyclopedia

Britannica (Gyroscope article), and in Grammel’s 1920 gyroscope textbook, their
achievements languished for decades. The only path by which Carvallo seemingly
influenced posterity is via Noether (see Klein & Sommerfeld (1910), next in this
list) who seems to follow his equations. Noether’s analysis was expanded to the full
Whipple model by Döhring (1953, 1955) Döhring (1955) was later translated into
English by CALSPAN. Then, in turn, Döhring’s equations were slightly misquoted
by Singh & Goel (1971). As far as we know, no-one ever used Whipple’s equations
of motion.

1910 Klein & Sommerfeld’s fourth volume on gyroscopes appears with an exten-
sive chapter on bicycles written by Fritz Noether (brother of mathematician
Emmy). These governing equations for a slightly simplified bicycle model (like
Carvallo’s), derived by Newton–Euler techniques used for other gyroscopic
systems, are equivalent to those in Carvallo (1899) and are fully correct.
While Noether claims to have compared his equations with Whipple as well
as Carvallo, he erroneously states that Whipple used a Lagrangian derivation,
and acknowledges neither Whipple’s more general model nor his typographi-
cal errors. Noether’s discussion of gyroscopic contributions and on degrees of
freedom for holonomic and non-holonomic systems is clear and informative.
Noether is keen to point out (incorrectly we think) that gyroscopic effects are
necessary for self-stability, and that steering torques from the trailing front
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ground contact are not sufficient for stability. In effect Noether introduces,
explains and dismisses the trail effects that were later a central interest of
David E.H. Jones (1970).

1948 Kondo in Japan wrote reports on bicycles between 1948 and 1964. In dis-
cussion of a paper by Fu, Kondo says he wrote equations of motion for the
meeting of JSME in November, 1948, unpublished (we have not seen this).
Neither have we checked Kondo’s later work that included tire models.

1949 Herfkens writes a report deriving equations for the Whipple model for the
Dutch Institute for Bicycle Development (in Dutch). The linearized equations
of motion are correct, except for some typos. On page 12, Eq. (28), cot(β)
should be cot(α). There is a missing term and misplaced brackets on page
13, and on page 14 the subscript of b5 is missing in Eq. (34). The coefficients
on page 15 agree with ours. Note that his steering angle β is our δ cos(λ).
Using Routh–Hurwitz stability criteria, he looked at the effect of some key
parameters (namely trail and front-wheel inertia, and head angle) on the
range of self-stability. He knew of Carvallo and Whipple but found them too
analytical. Herfkens’ report never seems to have been printed, distributed or
cited. We only found it through a listing in the Delft card catalogue.

1951 Manning, in a technical report of the Road Research Laboratory in Britain,
appears to provide correct non-linear configuration geometry, and a well-
organized derivation of the linearized equations of motion for a full Whip-
ple model. We have not yet checked the equations in detail, but the work
shows great care. Manning acknowledges Carvallo’s work but states “[it has]
not yet been compared with the results in this note”. He also writes “even if
this work is merely a repetition of Carvallo’s, it will be valuable to have the
theory in a more accessible form, in a more up-to-date notation, and in En-
glish.” That is exactly the sentiment of our present paper (but with respect
to Whipple). Ironically, Manning’s report is stamped “RESTRICTED Not
for publication” and seems essentially unknown to the world. It is referenced
by Roland (1973b) and the first edition of Bicycling Science by Whitt and
Wilson (1974). Manning’s paper is for sale by the Road Research Laboratory
in Britain.

1953–1955 Ekkehard Döhring at the Technology University of Braunschweig, Ger-
many, writes a Ph.D. thesis on the stability of a straight ahead running mo-
torcycle. Döhring generalizes the model of Noether (Klein & Sommerfeld,
1910) to make the mass distributions as general as Whipple, whose work he
seems not to have used. Döhring misdates Klein and Sommerfeld as 1890, the
time when Klein and Sommerfeld started writing their multi-volume book.
Döhring’s equations agree with ours in detail (Hand, 1988).

Döhring’s are the first perfectly correct equations of the Whipple model pre-
sented in the open literature (Whipple had small errors, Carvallo and Klein
& Sommerfeld were slightly less general). Döhring also did some eigenvalue
stability analysis and did experiments on a motor-scooter and two different
motorcycles (1954) to validate his results. Döhring’s 1955 paper was trans-
lated into English by CALSPAN but this translation is not published. Later
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citations of Döhring from Braunschweig follow CALSPAN and refer to him
as Doehring, Brunswick.

Döhring’s (1955) geometric equations (20) and (21) are not correct, but he
did not use these for his final (correct) equations of motion.

Döhring mentions a “turn of the century” bicycle author named Galetti about
whom we have no other information.

1963–1964 University of Wisconsin dissertations by Collins (1963) and Singh
(1964) both involve multi-page equations employing chained parameter defini-
tions. Collins relied on Wallace’s (1929) problematic non-linear geometry, but
this should not affect the correctness of his linearization. Although we did not
compare Collins’s equations in every detail, we noted a missing term and Psi-
aki (1979) found computational disagreement. Singh’s subsequent conference
and journal publications were based on Döhring’s (1955) correct equations,
rather than his own (see Singh and Goel (1971) below).

1966 Ge in Taiwan has a paper with a promising title. And Ge’s other publications
indicate expertise in rigid-body mechanics. But we have not seen the paper
nor succeeded in contacting the person.

1967 Nĕımark & Fufaev, in their authoritative book on non-holonomic dynamics,
present an exceptionally clear and thorough derivation of the equations of
motion for a Whipple bicycle (we read only the 1972 English translation).
Unfortunately, their treatment has several typographical errors, and also has
a flaw in the potential energy: equation (2.30) which ignores downward pitch of
the frame due to steering. This flaw was later corrected by Dikarev, Dikareva
& Fufaev (1981) and independently by Hand (1988).

In 1970 there was a sudden increase in single-track vehicle research, perhaps because
of the advent of digital computers and compact instrumentation, increased popular-
ity of large motorcycles (and attendant accidents), and a surge in bicycle popularity.
Most authors incorporated tire models which simplifies the equation formulation by
avoiding having to implement kinematic constraints. But tire models add empirical
parameters and complicate the resulting equations and their interpretation.

1970–1978 CALSPAN. One concentration of single-track research was at
CALSPAN (then the Cornell Aeronautical Laboratory), funded by the
U.S. government, Schwinn Bicycles and Harley-Davidson Motor Company.
CALSPAN generated about 20 bicycle reports and papers. The CALSPAN
program included hand calculations (involving linearized equations and alge-
braic performance indices for a somewhat simplified model), non-linear com-
puter models (including high-order rider control inputs), and a comprehensive
experimental program (including tire measurements and comparisons to ex-
periments).

CALSPAN reports include: Rice & Roland (1970), Roland & Massing (1971),
Roland & Lynch (1972), Rice & Roland (1972), Lynch & Roland (1972), Mil-
liken (1972), Roland & Rice (1973), Roland & Kunkel (1973), Roland (1973a),
Kunkel & Roland (1973), Roland (1973b), Anonymous (1973), Roland (1974),
Rice (1974a), Davis & Cassidy (1974), Rice (1974b), Roland & Davis (1974),
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Rice (1974c), Davis (1975) Kunkel & Rice (1975), Anonymous (1975a), Rice
et al. (1975), Anonymous (1975b), Kunkel (1975), Kunkel (1976), Rice (1976),
Rice & Kunkel (1976), Rice (1978). Six of these reports are singled out below
in their chronological places.

1970 Rice & Roland, in a CALSPAN report sponsored by the National Commission
on Product Safety, included an appendix on non-linear equations (except
linearized for small steer angles), where compliant, side-slipping tires avoid
the need to apply lateral or vertical contact constraints. Rider lean relative to
the frame is included. Thus the governing system includes all six velocities of
a rigid body, plus the two extra degrees of freedom (steer and rider lean). The
tabulated 8× 8 first order system is forbiddingly complex, and terms such as
wheel vertical force require a host of subsidiary equations to be defined. This
report seems to contain the first use of the term ‘mechanical trail’ to describe
the moment arm of the lateral front-contact forces about the steer axis.

1971 Roland & Massing, commissioned by the Schwinn bicycle company, write a
CALSPAN report on the modelling and experimental validation of an un-
controlled bicycle. The mix of modelling, measuring, and testing is unusually
thorough. After correcting an expression for tire slip, then linearizing and
imposing constraints their equations agree with the equations here.

1971 Robin Sharp (unrelated to Archibald above) considers a model with tire slip,
and front-assembly inertia tensor aligned with the steering axis. His partly
non-linear model treats rear-frame pitch as zero, with a constant force acting
upward on the front wheel. When he linearizes and takes the limit of infinite
lateral tire stiffness, he introduces minor algebraic and typographical errors
(see Hand 1988). Sharp does not base his equations on any prior work. This,
Sharp’s first of many bicycle and motorcycle dynamics papers, is the only
paper we have mentioned so far that has had a lasting influence. This paper
includes his original naming of the two major eigenmodes as ‘weave’ and
‘capsize’. Most users of Sharp’s equations include models for tire deformation.

1971 Singh & Goel say they use Döhring’s (1955) equations (which are correct)
and not Singh’s (1964) equations (which are suspect). The equations of mo-
tion Singh & Goel present correspond well with Döhring’s, except for two
typographical errors in the first equation: in the first line, V ψ̈ should read
V ψ̇ and in the second line, I13(I) should read I13(II). Also they make use of
the incorrect geometric relations (20) and (21) of Döhring (1955) (which are
not used by Döhring himself). We were unable to reproduce Singh & Goel’s
reported eigenvalues.

1972 Roland & Lynch, commissioned by the Schwinn bicycle company, write a
CALSPAN report on a rider control model for path tracking, bicycle tire test-
ing, experimental tests to determine the effect of design parameters on the
stability and manoeuvrability of the bicycle, and the development of com-
puter graphics for display purposes. For the bicycle model the equations from
Roland & Massing (1971) are used.

1972 In his Ph.D. thesis Weir explicitly compares his correct equations with the
previous slightly incorrect and slightly specialized results of Sharp (1971).
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Weir appears to be the first to perform such a check. Weir’s thesis is widely
cited.

1973 Eaton presents governing equations without derivation. He explains that he
reconciled his own derivation with Sharp (1971) and Weir (1972), although
using his own notation and somewhat embellishing the tire models.

1973 Roland (1973b) reports in the open literature, rare for CALSPAN, basically
the same equations as in Roland & Massing (1971). Apparently few if any
typos were corrected and some further typos seem to have been introduced.

1974 Rice (1974c) at CALSPAN uses simplified linearized analysis to develop
steady-state and transient performance indices. He investigates the stiffness
matrix (with rider lean included, statically equivalent to a lean moment),
which requires only point-mass bicycle parameters. Much of the complication
depends on tire parameters. As in Carvallo (1899) and Whipple (1899), formu-
lae are given for capsize speed and for the low speed at which turning leaves
the rear frame perfectly upright (when the displacement of the front contact
and front centre of mass perfectly balance the lean moment of centrifugal
force).

1975 Van Zytveld’s Engineer’s thesis on a robot bicycle controller develops equa-
tions that agree with ours, except for some incorrect terms involving ‘rider
lean’ which drop out for the rigid rider assumption used in our Whipple
model. According to van Zytveld, his advisor John Breakwell had developed
independently equations of motion, without a rider-robot, that matched van
Zytveld when simplified to remove rider lean (see also Breakwell 1982).

1976 Singh & Goel elaborate the Whipple model to allow deviations from left-right
symmetry and incorporate more sophisticated tire models, leading to a very
high order system of governing equations. The derivation appears to follow
Sharp (1971) but we have not checked the results in detail.

1976 Rice writes a CALSPAN report on simplified dynamic stability analysis. He
assumes all inertia tensors to have a vertical principal axis. This report ex-
plicitly identifies the frequently-occurring combination of terms which we call
SA.

1978 Weir & Zellner present Weir’s equations but introduce a sign error in the
mistaken belief they are making a correction, and commit several typograph-
ical errors (Hand 1988). Weir’s thesis (1972), not Weir & Zellner, should be
used for correct equations.

1978 Lobas (in translation misspelled as Gobas) extends the treatment by Nĕımark
& Fufaev (1972) to add forward acceleration. When we set acceleration to
zero, it appears that the static lean contribution to Lobas’s steer equation is
in error.

1979 Psiaki writes a dense Princeton undergraduate honors thesis on bicycle dy-
namics. Starting from a fully non-linear analysis based on Lagrange equations
with non-holonomic constraints, he developed linearized equations for both
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an upright body and for a rigid bent body in hands-free turns. The equations
of motion were complex and we have not checked them in detail, but his nu-
merical results match ours to plotting accuracy suggesting, to us, correctness.

1981 Dikarev, Dikareva & Fufaev in equation (1.2) therein correct the errors in
Nĕımark & Fufaev (1972). They write subtly about their “refinement” that
“Note that in [Neimark and Fufaev] the expression for φ was obtained only
to within first-order small terms... ”. This should make their final equations
correct, but we have not checked them in detail. This same error was corrected
later independently by Hand (1988).

1985 Sharp presents a very comprehensive review of extended motorcycle dynamics
equations, with an emphasis on capturing weave motions that seem to depend
on tire and frame compliance. He has some errors in his description of the
pre-1970 literature. Sharp (1985) identifies Sharp (1971) as ‘confirmed’, with
which, but for minor errors, Hand (1988) agrees.

1987 Papadopoulos focused on achieving a compact notation and simple deriva-
tion of the equations of motion, using Hand’s (1988) results as a check. The
equations in the present paper are based on this Papadopoulos report.

1988 Hand’s Cornell M.Sc. thesis compares a variety of publications and settles on
a compact, transparent notation. Hand’s thesis was advised by Papadopoulos
and nominally by Ruina. Hand shows that several approaches, e.g. (Döhring
1955, Nĕımark & Fufaev 1972, Sharp 1971, and Weir 1972) all led to the
same governing equations once errors were corrected. Hand, unaware of the
work of Dikarev, Dikareva & Fufaev (1981), independently and similarly cor-
rected Nĕımark & Fufaev (1972). Psiaki (2006, personal communication) also
checked Hand’s derivation which is similar to Nĕımark & Fufaev. Psiaki found
terms missing from Hand’s Lagrangian that fortunately have no effect on the
equations of motion.

1988 Mears verified Weir’s (1972) thesis and noted Weir’s later (1978) errors.
Mears also checked against Hand (1988).

The 1980s essentially mark an end to the development of sound equations for the
Whipple bicycle model. Equations from Sharp, Weir or Eaton are widely cited as
valid, even though explicit comparisons are rare. Subsequent research on motorcycle
and bicycle dynamics tends to focus on elaborations necessary for modelling tire
and frame deformations or on non-linear modelling.

1990 Franke, Suhr & Rieß derive non-linear equations of a bicycle, with neglect
of some dynamic terms. This paper was the topic of an optimistic lead ed-
itorial in Nature by John Maddox (1990). We did not check the derivation.
The authors did not find agreement between integration of their differential
equations for small angles and the integration of the Papadopoulos (1987)
equations (1990 — private communication). However, recently Lutz Aderhold
(2005 — private communication) applied our benchmark bicycle parameters
to an updated form of the Franke, Suhr & Rieß non-linear model and obtained
agreement of eigenvalues in an approximately upright configuration, within
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plotting accuracy. Thus we expect that the well-conceived Franke et al. model
is largely correct, but perhaps for details corrected by Aderhold.

1999 Lennartsson’s PhD thesis has linear and non-linear numerical analysis of the
Whipple bicycle model. In a 2006 personal communication Lennartsson said
his 1999 numerical work agrees with the equations presented in this paper.

2004 Meijaard in preparing for this publication makes an independent derivation
of the linearized equations of motion that agrees with the equations here.

2004 Schwab, Meijaard & Papadopoulos write a draft of the present paper and
present it at a conference. The present paper uses a slightly different notation,
and uses more carefully selected benchmark parameters. The present paper
subsumes Schwab et al. (2004).

2005 Åström, Klein & Lennartsson present a wide-ranging paper, part of which
is discussed in section (b) above. Another discussion in the paper builds on
Schwab et al. (2004) and Papadopoulos (1987) and presents some parame-
ter studies based on them. Åström et al. also presents Lennartsson’s (1999)
simulations from a general purpose rigid-body dynamics code. In addition to
some non-linear dynamics observations, they show agreement with the bench-
mark equations in Schwab et al. (2004), although not with enough precision
to assure correctness. Recently Lennartsson (2006 — private communication)
made a high-precision comparison for the current benchmark parameters, and
found agreement out to 12 decimal places.

2006 Meijaard & Schwab extend the Whipple bicycle model with torus wheels and
the effects of braking and accelerations caused by moments at the hubs of the
rear and front wheel, by a road gradient, and by aerodynamic drag.

2006 Kooijman, Schwab & Meijaard (2007) measure dynamic responses on an
instrumented bicycle and validate the Whipple model by comparing between
the experimentally measured eigenvalues and the eigenvalues predicted by the
formulas here. They find good agreement in the speed range for 2 to 6 m/s.

2006 Limebeer & Sharp, in part of a large historical review paper, present the
equations of Schwab et al. (2004) (the equations that the present publication
archives) and also use the AutoSim model of Schwab et al. (2004) .

Although many reports, theses, and papers have models at least almost as gen-
eral as Whipple’s model, and many of these are largely correct, as yet there is no
consensus that any peer-reviewed paper in English has correct equations. Carvallo
(1899) and later Klein & Sommerfeld (1910) presented correct equations for a some-
what simplified bicycle. Whipple (1899) treated the general bicycle, but has a few
typographical errors. By our (possibly incomplete) evaluation, the first error-free
publication of full explicit equations for the general Whipple bicycle, and the only
journal publication with full correct explicit equations, is that by Döhring (1955) in
German. Sharp (1971) has a restricted front-assembly inertia, and introduces an er-
ror when specialized to tire-free rolling constraints. Singh & Goel (1971) introduce
errors when presenting Döhring’s correct equations. Weir & Zellner (1978) intro-
duce an error when publishing Weir’s correct thesis equations. Dikarev et al. (1981)
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give correct equations implicitly. On the other hand, the theses by Weir (1972),
Eaton (1973), van Zytveld (1975, when ‘rider lean” is neglected’), Hand (1988) and
Mears (1988) have correct explicit equations. Previous “gray” literature reports by
the present authors also have correct explicit equations.
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Supplementary (expanded) bibliography

This bibliography is a superset of the bibliography in the main paper. It includes
all of the main paper’s references and many more. Length limitations prevented a
longer reference list in the main paper, but we wanted researchers to have access to
a single comprehensive bibliography, this one. Reprints of some of the harder-to-find
references are available at Andy Ruina’s bicycle www site.
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Döhring, E. 1954 Die Stabilität von Einspurfahrzeugen. Automobil Technische Zeitschrift,
56(3), 68–72.
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Le Hénaff, Y. 1987 Dynamical stability of the bicycle. Eur. J. Phys. 8, 207–210.

Lennartsson, A. 1999 Efficient multibody dynamics. Ph.D. thesis, Royal Institute of Tech-
nology, Stockholm.

Letov, A. M. 1959 Stability of an automatically controlled bicycle moving on a horizontal
plane. Prikl. Math. Mekh. 23 650–655. (Transl. Appl. Math. Mech. 23 934–942.)

Limebeer, D. J. N. & Sharp, R. S. 2006 Bicycles, motorcycles, and models. IEEE Control
Systems Mag. 26(5), 34–61.

Lobas, L. G. 1978 Controlled and programmed motion of a bicycle on a plane. Izv. Akad.
Nauk SSSR Mekh. Tverd. Tela 13(6) 22–28. (Transl. Mech. Solids 13(6), 18–24; author’s
name misspelled into “Gobas”.)
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2. SPACAR model

The SPACAR model for the benchmark bicycle is sketched in figure 5 and the input
file for the SPACAR program describing this model is presented in §2 a.

Because the SPACAR program is based on finite element methods (FEM), the
input file shows an FEM structure. The SPACAR input file is roughly divided into
four parts: element declaration and connectivity, nodal data, boundary conditions,
and some additional data like masses, inertias, applied forces and simulation set-
tings.

In the first section of input in §2 a the elements are declared: they are given a
type, a unique element number followed by a list of node numbers and an initial
rotation axis. These element statements implicitly define the associated nodes. The
nodes are either translational or rotational. A hinge element allows large relative
rotation between two rotational nodes. A wheel element allows rolling contact at
the contact point node. A pinbody element generates a node within a rigid body by
which another finite element can be connected. Within this finite element approach
a rigid body can be defined in two ways: either as a deformable element with
all deformation modes set to zero or as a body with one three-degree-of-freedom
translational node and one three-degree-of-freedom rotational node.

In the second section of the input file the nodes, which are placed at the centres of
mass of the rigid bodies, are given their reference-configuration coordinates. Trans-
lational nodes have three coordinates (x, y, z) in a global reference frame whereas
rotational nodes are parameterized by four Euler parameters. These parameters are
set to (1, 0, 0, 0), the unit transformation, in the reference configuration.

The approach in establishing a bicycle model is to consider it in a reference
configuration: upright, orientated along the x-axis, and with the rear contact at
the origin. This configuration is used to define nodal positions and rigid body
orientations. Relative to this reference configuration it is easy to set an initial lean
or steer angle and set the rates as initial conditions. However, to do a simulation
from an arbitrary configuration, the system must be driven there by specifying a
path from the initial configuration to the desired initial state.

Any consistent set of units may be used. Here SI units are used.
In the third section the boundary conditions are set. The implicit definition is

that all nodes are free and all elements are rigid. A node’s position or orientation
in space can be fixed by the fix command; otherwise it is free to move in space.
An element can be allowed to ‘deform’; e.g. a hinge element is allowed to rotate,
by the rlse command. A non-zero prescribed ‘deformation’ mode is specified by
inpute, e.g. the forward motion of the bicycle in this example. For generating
linearized equations of motion the line command identifies a degree of freedom
to be used. The enhc command ties a non-holonomic constraint to a configuration
space coordinate so as to identify those configuration coordinates for which the time
derivative is not a velocity degree of freedom.

In the last section mass and inertia are added to the nodes, one value for trans-
lational nodes and six values for rotational nodes (the terms in the upper triangle
portion of the inertia matrix in the initial configuration). Finally applied (constant)
forces are added and some initial conditions and simulation settings are made.

When the program is run, for each output time step, all system variables (coor-
dinates, deformations, speeds, accelerations, nodal forces, element forces, etc.) are
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written to standard files which can later be read by other software for plotting or
analysis. At every time step the numeric values of the coefficients of the SPACAR
semi-analytic linearization are also written to standard files.
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Figure 5. Sketch of the bicycle model for SPACAR input together with node numbers
(straight arrows for translations 1 · · · 8, curved arrows for rotations 9 · · · 15) and element
numbers encircled.

(a) SPACAR Input file

The sketch of this model is shown in figure 5.

% SPACAR input file for bicycle benchmark I

% SECTION 1, ELEMENT DECLARATION AND CONNECTIVITY:

% type number nodes rotation axis vector

hinge 1 9 10 0 0 1 % yaw angle rear frame between node 9(ground) and 10

hinge 2 10 11 1 0 0 % lean angle rear frame between node 10 and 11

hinge 3 11 13 0 1 0 % pitch angle rear frame between node 11 and 13(frame)

hinge 4 13 12 0 1 0 % rear wheel rotation between 13(frame) and 12(wheel)

wheel 5 3 12 2 0 1 0 % rear wheel, cm nodes 3, 12, contact pnt 2

pinbody 6 4 13 3 % node 3(rear hub) in rigid body nodes 4, 13(frame)

pinbody 7 4 13 5 % node 5(head) in rigid body nodes 4, 13(frame)

hinge 8 13 14 0.32491969623291 0 1.0 % steering angle between 13 and 14

pinbody 9 5 14 6 % node 6(cm fork) in rigid body 5, 14(front frame)

pinbody 10 5 14 7 % node 7(front hub) in rigid body 5, 14(front frame)

hinge 11 14 15 0 1 0 % front wheel rotation between 14 and 15(wheel)

wheel 12 7 15 8 0 1 0 % front wheel, cm nodes 7, 15, contact pnt 8

pinbody 13 1 9 2 % node 2(rear contact pnt) in rigid body nodes 1, 9

% SECTION 2, NODAL DATA:

% node initial coordinates, all rotational nodes are initialized:(1,0,0,0)
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x 1 0 0 0 % fixed origin

x 2 0 0 0 % rear contact point

x 3 0 0 -0.3 % rear hub

x 4 0.3 0 -0.9 % cm rear frame + rigid rider

x 5 0.80757227339038 0 -0.9 % steering head

x 6 0.9 0 -0.7 % cm front fork + handle bars

x 7 1.02 0 -0.35 % front hub

x 8 1.02 0 0 % front contact point

% SECTION 3, BOUNDARY CONDITIONS:

% type number components

fix 1 1 2 3 % fix all(1,2,3) translations node 1(ground)

fix 9 1 2 3 4 % fix all(1,2,3,4) rotations node 9(ground)

rlse 1 1 % release rotation(1) hinge 1: yaw

rlse 3 1 % release rotation(1) hinge 3: pitch

rlse 11 1 % release rotation(1) hinge 11: front wheel rotation

rlse 13 1 2 3 % release all relative displacements(1,2,3) in pinbody 13

inpute 4 1 % rotation(1) hinge 4 is prescribed motion for forward speed

line 2 1 % generate linearized eqns for rotation(1) hinge 2: lean

line 8 1 % generate linearized eqns for rotation(1) hinge 8: steering

% tie a a non-holonomic constraint to a configuration space coordinate

%type lmnt mode lmnt mode (lmnt means element number)

enhc 5 4 13 1 % wheel 5 4=long slip tied to pinbody 13 1=x-disp node 2

enhc 5 5 13 2 % wheel 5 5=lat slip tied to pinbody 13 2=y-disp node 2

enhc 12 4 1 1 % wheel 12 4=long slip tied to hinge 1 1=yaw rear frame

enhc 12 5 11 1 % wheel 12 5=lat slip tied to hinge 11 1=front wheel rot

% SECTION 4, ADDITIONAL DATA: MASS, INERTIA, APPLIED FORCES, AND SIMULATION SETTINGS

% node mass:(m) or mass moment of inertia:(Ixx,Ixy,Ixz,Iyy,Iyz,Izz)

mass 3 2.0 % mass rear wheel

mass 12 0.0603 0 0 0.12 0 0.0603 % inertia rear wheel

mass 4 85.0 % mass rear frame + rider

mass 13 9.2 0 2.4 11.0 0 2.8 % inertia rear frame + rider

mass 6 4.0 % mass front frame + handle bars

mass 14 0.05892 0 -0.00756 0.06 0 0.00708 % inertia front frame + handle bars

mass 7 3.0 % mass front wheel

mass 15 0.1405 0 0 0.28 0 0.1405 % inertia front wheel

% node applied force vector (gravity used g = 9.81)

force 3 0 0 19.62 % gravity force rear wheel

force 4 0 0 833.85 % gravity force rear frame + rider

force 6 0 0 39.24 % gravity force front frame + handle bars

force 7 0 0 29.43 % gravity force front wheel

% initial conditions

ed 4 1 -3.333333333 % angular velocity in hinge 4(forward speed) set to -3.333333333

% simulation settings

epskin 1e-6 % set max constraint error for Newton-Raphson iteration

epsint 1e-5 % set max numerical integration error on coordinates

epsind 1e-5 % set max numerical integration error on speeds

timestep 100 2.0 % set number of output timesteps and simulation time

hmax 0.01 % set max step size numerical integration

end % end of run

eof % end of file
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3. AutoSim model

The AutoSim 2.80 input file used for the bicycle model is listed below. The gen-
eralized coordinates and velocities are the same as those in the SPACAR model.
Two massless intermediate reference frames have been introduced: a yawing frame
describing the horizontal translation and yawing of the rear frame and a rolling
frame describing the lean of the rear frame with respect to the yawing frame. These
additional frames allow a better control over the choice of the generalized coordi-
nates by the program. The holonomic constraint at the rear wheel is automatically
satisfied. The holonomic constraint at the front wheel and the four non-holonomic
constraints are explicitly defined in the input file. For more details on the syntax
used see the AutoSim documentation.

(a) AutoSim Input file

;;;; This is the file fietsap2.lsp, with the benchmark1 model.

;; Set up preliminaries:

(reset)

(si)

(add-gravity :direction [nz] :gees g)

(set-names g "Acceleration of gravity" )

(set-defaults g 9.81) ; this value is used in the benchmark.

;; The name of the model is set to the string "fiets".

(setsym *multibody-system-name* "fiets")

;; Introduce a massless moving reference frame. This frame has x and y

;; translational degrees of freedoms and a yaw rotational degree of freedom.

( add-body yawframe :name "moving yawing reference frame"

:parent n :translate (x y) :body-rotation-axes z

:parent-rotation-axis z :reference-axis x :mass 0

:inertia-matrix 0 )

;; Introduce another massless moving reference frame. This frame has a rolling

;; (rotational about a longitudinal axis) degree of freedom.

( add-body rollframe :name "moving rolling reference frame" :parent yawframe

:body-rotation-axes (x) :parent-rotation-axis x :reference-axis y :mass 0

:inertia-matrix 0 )

;; Add the rear frame of the bicycle. The rear frame has a pitching (rotation

;; about the local lateral y-axis of the frame) degree of freedom.

( add-body rear :name "rear frame" :parent rollframe

:joint-coordinates (0 0 "-Rrw") :body-rotation-axes y

:parent-rotation-axis y :reference-axis z :cm-coordinates (bb 0 "Rrw-hh")

:mass Mr :inertia-matrix ((Irxx 0 Irxz) (0 Iryy 0) (Irxz 0 Irzz)) )

( set-names

Rrw "Rear wheel radius"

bb "Longitudinal distance to the c.o.m. of the rear frame"

hh "Height of the centre of mass of the rear frame"

Mr "Mass of the rear frame"

Irxx "Longitudinal moment of inertia of the rear frame"

Irxz "Minus product of inertia of the rear frame"

Iryy "Transversal moment of inertia of the rear frame"

Irzz "Vertical moment of inertia of the rear frame" )

( set-defaults Rrw 0.30 bb 0.3 hh 0.9

Mr 85.0 Irxx 9.2 Irxz 2.4 Iryy 11.0 Irzz 2.8 )
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;; Add the rear wheel of the vehicle. This body rotates

;; about the y axis of its physical parent, the rear frame.

( add-body rw :name "rear wheel" :parent rear :body-rotation-axes y

:parent-rotation-axis y :reference-axis z :joint-coordinates (0 0 0)

:mass Mrw :inertia-matrix (irwx irwy irwx) )

( set-names

Mrw "mass of the rear wheel"

irwx "rear wheel in-plane moment of inertia"

irwy "rear wheel axial moment of inertia" )

(set-defaults Mrw 2.0 irwx 0.0603 irwy 0.12)

;; Now we proceed with the front frame.

;; Define the steering and reference axes of the front frame.

;; Add in the front frame: define some points.

( add-point head :name "steering head point B" :body n

:coordinates (xcohead 0 zcohead) )

( add-point frontcmpoint :name "c.o.m. of the front frame" :body n

:coordinates (xfcm 0 zfcm) )

( set-names

epsilon "steering head angle"

xcohead "x coordinate of the steering head point B"

zcohead "z coordinate of the steering head point B"

xfcm "x coordinate of the c.o.m. of the front frame"

zfcm "z coordinate of the c.o.m. of the front frame" )

( set-defaults epsilon 0.314159265358979316

xcohead 1.10 zcohead 0.0 xfcm 0.90 zfcm -0.70 )

( add-body front :name "front frame" :parent rear :body-rotation-axes z

:parent-rotation-axis "sin(epsilon)*[rearx]+cos(epsilon)*[rearz]"

:reference-axis "cos(epsilon)*[rearx]-sin(epsilon)*[rearz]"

:joint-coordinates head :cm-coordinates frontcmpoint :mass Mf

:inertia-matrix ((Ifxx 0 Ifxz) (0 Ifyy 0) (Ifxz 0 Ifzz))

:inertia-matrix-coordinate-system n )

( set-names

Mf "Mass of the front frame assembly"

Ifxx "Longitudinal moment of inertia of the front frame"

Ifxz "Minus product of inertia of the front frame"

Ifyy "Transversal moment of inertia of the front frame"

Ifzz "Vertical moment of inertia of the front frame" )

( set-defaults Mf 4.0

Ifxx 0.05892 Ifxz -0.00756 Ifyy 0.06 Ifzz 0.00708 )

;; Add in the front wheel:

( add-point fw_centre :name "Front wheel centre point" :body n

:coordinates (ll 0 "-Rfw") )

( add-body fw :name "front wheel" :parent front :body-rotation-axes y

:parent-rotation-axis y :reference-axis "[nz]"

:joint-coordinates fw_centre :mass Mfw :inertia-matrix (ifwx ifwy ifwx) )

( set-names

ll "Wheel base"

Rfw "Radius of the front wheel"

Mfw "Mass of the front wheel"

ifwx "In-plane moment of inertia of the front wheel"

ifwy "Axial moment of inertia of the front wheel" )

(set-defaults ll 1.02 Rfw 0.35 Mfw 3.0 ifwx 0.1405 ifwy 0.28)
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;; The system is complete, except for the contact constraints at the wheels.

;; The holonomic constraint at the rear wheel is automatically satisfied.

;; The rear wheel slip is zero.

( add-speed-constraint "dot(vel(yawframe0),[yawframex])+Rrw*(ru(rear)+ru(rw))"

:u "tu(yawframe,1)" )

(add-speed-constraint "dot(vel(yawframe0),[yawframey])" :u "tu(yawframe,2)")

;; For the front wheel we have a holonomic constraint for the contact and two

;; non-holonomic slip constraints. The slip velocities are defined now.

(setsym singammafw "dot([fwy],[nz])")

(setsym cosgammafw "sqrt(1-@singammafw**2)")

(setsym fw_rad "([nz] - [fwy]*@singammafw)/@cosgammafw")

(setsym slipfw_long "dot(vel(fw0)+Rfw*cross(rot(fw),@fw_rad),[nx])")

;; No longitudinal slip on front wheel;

;; eliminate rotational velocity about the axis

(add-speed-constraint "@slipfw_long" :u "ru(fw)")

;; normal constraint; eliminate the pitch angle

(setsym slipfw_n "dot(vel(fw0)+Rfw*cross(rot(fw),@fw_rad),[nz])")

(add-speed-constraint "@slipfw_n" :u "ru(rear)")

(add-position-constraint "dot(pos(fw0),[nz])+Rfw*@cosgammafw" :q "rq(rear)")

;; No lateral slip on front wheel; eliminate yaw rate of the yawing frame

(setsym slipfw_lat "dot(vel(fw0)+Rfw*cross(rot(fw),@fw_rad),[ny])")

(add-speed-constraint "@slipfw_lat" :u "ru(yawframe)")

(dynamics)

(linear)
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4. Decoupling of lateral and forward dynamics: v̇ = 0

Here we present in more detail why symmetry decouples lean and steer from forward
motion in the linearized equations. As explained in §4 c, some configuration variables
(ignorable coordinates) do not show up in the equations of motion and so are not
of central interest. These include position (xP, yP) on the plane, the yaw ψ, and
the net wheel rotations θR and θF. Of interest is the evolution of the right lean φ,
the right steer δ, and backwards rear wheel rotation rate θ̇R. For conceptual and
notational convenience define forward speed as v = −rRθ̇R and use v instead of θ̇R
in the discussion below. First we establish the forward motion governing equation
when there is no applied thrust.

Without writing explicit non-linear equations, we know they have this in-plane
exact reference solution:

v(t) = v∗, φ(t) = 0 and δ(t) = 0 (B 1)

where v∗ is an arbitrary constant.
The linearized equations are for small perturbations about this reference solu-

tion. For notational simplicity we take the lean and steer perturbations as merely φ
and δ recognizing that we are discussing only infinitesimal values of these variables.
For the forward motion take the perturbation to be v̂.

For the argument below we depend only on the linearity of the equations, and
not their detailed form. Take an arbitrary set of initial conditions to be (v̂0, φ0, δ0).
At some definite time later, say td = 1 s for definiteness, the values of the speed
lean and steer at td must be given by





v̂d

φd

δd



 = A





v̂0
φ0

δ0



 (B 2)

for any possible combination of v̂0, φ0, and δ0. The matrix

A =





Avv Avφ Avδ

Aφv Aφφ Aφδ

Aδv Aδφ Aδδ





depends on which definite time td is chosen. Because the bicycle rolls on a flat
horizontal isotropic plane and there is no time-dependent forcing, the coefficient
matrix A is dependent on the time interval td but independent of the starting time.

Now consider an initial condition 1 where only the lean is disturbed:





v̂1
0

φ1
0

δ10



 =





0

1

0





where we think of 1 as a small perturbation. This results in a perturbation a time
td later of





v̂1
d

φ1
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δ1d
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Avφ

Aφφ

Aδφ
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where the right side is the middle column of A. Now consider the opposite pertur-
bation 2 with





v̂2
0

φ2
0

δ20



 =





0

−1

0





which results in a perturbation a time td later of





v̂2
d

φ2
d

δ2d



 =





−Avφ

−Aφφ

−Aδφ





where the right side is the negative of the middle column of A; for a linear system
negating the input negates the output.

Now we invoke lateral symmetry. If knocking a bicycle to the left causes it to
speed up, knocking it to the right must cause it to speed up equally. So

v2
d = v1

d ⇒ Avφ = −Avφ ⇒ Avφ = 0.

Now we can similarly apply a rightwards perturbation to just the steer. On
the one hand linearity requires a negative steer to have the negative effect on
forward speed. On the other hand, lateral symmetry requires that a rightwards
steer perturbation have an equal effect as a leftwards perturbation. Thus, by the
same reasoning as for lean we get Avδ = 0.

Next, consider perturbations to just the forward speed v̂. By symmetry these
can cause neither left or right lean or steer. So Aφv = Aδv = 0. Thus symmetry
reduces the matrix A to having zeros off the diagonal in both the first row and the
first column.

Finally, we know the steady upright solution is an exact non-linear solution for
any v∗. Assuming that the full non-linear equations have unique solutions for any
given initial conditions, a perturbation in v∗ merely leads to a new constant speed
solution at the perturbed v∗. Thus, v̂d = v̂0 and Avv = 1.

Altogether this means that the linearized equations giving the perturbed values
of the state at time td in terms of the initial perturbation are necessarily of the
form of equation (B 2) with

A =





1 0 0

0 Aφφ Aφδ

0 Aδφ Aδδ



 .

This form must hold for any td. Thus perturbations in lean φ and steer δ never have
influence on the forward speed v and vice versa, perturbations in speed have no
influence on lean and steer. Similarly, lean and steer rates (φ̇, δ̇) are also decoupled
from forward motion. Further, because v̂d = v̂0 for all time, v̂ is a constant so

v̇ = 0. (B 3)

This is the first of the three linearized equations of motion.
Similar arguments show that forward forcing does not cause lean or steer and

that lateral forcing does not cause changes in speed (to first order). Thus a bicycle
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which is forced to go at exactly constant speed in a full non-linear analysis has the
same linearized lean and steer governing equations as for the bicycle that is free in
forward motion. Such is confirmed by SPACAR numerical analysis where

1. For sufficiently small deviations from upright, both constant energy and con-
stant speed give the same solutions (to about 9 digits) and

2. Both constant speed and constant energy give the same values for the numer-
ical coefficients in the linearized equations. These are also the same as the
values presented in the body of the paper here for our ad hoc linearization (to
about 14 digits). These two comparisons were also performed by Lennartsson
(2006, personal communication).
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5. A simplified benchmark model

In a second benchmark various simplifications are made to permit comparison with
less complete models. The design parameters are according to table 1 but with
the following changes. Both wheels are planar, Iyy = 2Ixx, and identical with:
mR = mF = 3 kg, rR = rF = 0.35 m, and (IRxx, IRyy) = (IFxx, IFyy) = (0.14, 0.28)
kgm2. The mass of the rear frame and body assembly B is mB = 85 kg located at
(xB, zB) = (0.3,−0.9) m, whereas the mass moment of inertia is zero, IB = 0. The
front frame H has neither mass, mH = 0, nor inertia moments, IH = 0. Substitution
of these values of design parameters for the simplified benchmark bicycle in the
expressions from appendix A results in the following values for the entries in the
mass matrix from (A 20),

M =

[

69.865 1.868 727 853 976 56

1.868 727 853 976 56 0.239 079 887 561 38

]

,

the entries in the constant stiffness matrix from (A22) which are to be multiplied
by gravity g,

K0 =

[

−78.6 −2.226 580 876 684 00

−2.226 580 876 684 00 −0.688 051 330 245 63

]

,

the coefficients of the stiffness matrix from (A24) which are to be multiplied by the
square of the forward speed v2,

K2 =

[

0, 74.779 149 614 579 71

0, 2.306 586 620 338 71

]

,

and finally the coefficients of the “damping” matrix from (A26) which are to be
multiplied by the forward speed v,

C1 =

[

0 , 29.140 558 140 953 37

−0.880 193 481 747 67, 1.150 360 143 808 13

]

.

To facilitate comparison with equations or results derived using different methods,
eigenvalues are presented. These eigenvalues in the forward speed range show the
same structure as those from the full benchmark bicycle, see figure 3, but with
slightly different values. The precise eigenvalues for the simplified bicycle benchmark
at some forward speeds are presented in table 3.
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Table 3. Some characteristic values for the forward speed v and the eigenvalues λ from the
linearized stability analysis for the simplified benchmark bicycle from §5. Fourteen digit
results are presented for benchmark comparisons. (a) v = 0, weave speed vw, capsize speed
vc and the speed with a double root vd. In the forward speed range of 0 ≤ v ≤ 10 m/s: (b)
Complex (weave motion) eigenvalues λweave, and (c) Real eigenvalues λ.

(a)

v [m/s] λ [1/s]

v = 0 λs1 = ±3.321 334 354 955 67
v = 0 λs2 = ±5.695 461 613 073 60

vd = 0.804 279 462 741 01 λd = 4.043 478 683 070 60
vw = 5.405 811 651 738 11 λw = 0 ± 7.746 411 825 301 59 i
vc = 5.706 991 804 685 07 0

(b)

v Re(λweave) Im(λweave)
[m/s] [1/s] [1/s]

0 – –
1 3.915 605 159 008 03 0.676 636 216 381 60
2 3.145 971 626 952 20 1.947 971 866 614 21
3 2.096 627 566 535 66 3.144 568 094 683 27
4 0.910 809 011 944 21 4.881 202 124 548 49
5 0.198 648 678 113 17 6.936 393 452 637 19
6 −0.245 683 866 155 55 8.903 125 360 683 31
7 −0.589 203 483 851 70 10.790 930 464 293 57
8 −0.883 875 624 871 00 12.628 966 109 587 14
9 −1.150 515 263 118 26 14.434 482 871 116 77

10 −1.399 313 952 184 76 16.217 648 368 548 84

(c)

v λcapsize λcastering

[m/s] [1/s] [1/s]

0 −3.321 334 354 955 67 −5.695 461 613 073 60
1 −3.339 571 399 042 72 −6.577 674 865 894 17
2 −3.122 857 194 829 05 −7.341 157 952 916 98
3 −2.196 003 785 406 69 −8.255 359 188 427 08
4 −0.787 290 747 535 25 −9.378 471 064 036 38
5 −0.161 936 233 356 19 −10.665 540 857 474 20
6 0.039 380 255 445 46 −12.064 228 204 659 15
7 0.114 168 685 341 41 −13.538 013 346 083 71
8 0.143 031 193 913 90 −15.063 567 519 538 39
9 0.152 632 341 109 21 −16.625 925 337 159 89

10 0.153 494 106 064 82 −18.215 225 670 903 33
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